首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   230篇
  免费   10篇
  2023年   3篇
  2022年   1篇
  2021年   1篇
  2019年   4篇
  2018年   5篇
  2017年   3篇
  2016年   1篇
  2015年   6篇
  2014年   7篇
  2013年   7篇
  2012年   8篇
  2011年   8篇
  2010年   3篇
  2009年   6篇
  2008年   13篇
  2007年   15篇
  2006年   5篇
  2005年   13篇
  2004年   13篇
  2003年   12篇
  2002年   13篇
  2001年   6篇
  2000年   9篇
  1999年   5篇
  1998年   4篇
  1997年   1篇
  1996年   3篇
  1995年   3篇
  1994年   4篇
  1993年   6篇
  1992年   5篇
  1991年   6篇
  1990年   6篇
  1989年   5篇
  1988年   2篇
  1987年   4篇
  1986年   3篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1975年   2篇
  1967年   1篇
  1964年   1篇
  1938年   1篇
排序方式: 共有240条查询结果,搜索用时 15 毫秒
51.
Summary Escherichia coli rnh mutants deficient in ribonuclease H (RNase H) are capable of DNA replication in the absence of protein synthesis. This constitutive stable DNA replication (SDR) is dependent upon the recA + gene product. The requirement of SDR for recA + can be suppressed by rin mutations (for recA+-independent), or by lexA(Def) mutations which inactivate the LexA repressor. Thus, there are at least three genetically distinct types of SDR in rnh mutants: recA +-dependent SDR seen in rnh - rin+ lexA+ strains, recA +-independent in rnh - rin- lexA+, and recA +-independent in rnh - rin+ lexA(Def). The expression of SDR in rin - and lexA(Def) mutants demonstrated a requirement for RNA synthesis and for the absence of RNase H. The suppression of the recA + requirement by rin mutations was shown to depend on some new function of the recF + gene product. In contrast, the suppression by lexA-(Def) mutations was not dependent on recF +. The lexA3 mutation inhibited recA +-dependent SDR via reducing the amount of recA + activity available, and was suppressed by the recAo254 mutation. The SDR in rnh - rin- cells was also inhibited by the lexA3 mutation, but the inhibition was not reversed by the recAo254 mutation, indicating a requirement for some other lexA +-regulated gene product in the recA +-independent SDR process. A model is presented for the regulation of the expression of these three types of SDR by the products of the lexA +, rin+ and recF + genes.  相似文献   
52.
Summary The thermosensitivity of dnaA(Ts) mutations can be suppressed by integration of plasmid F (integrative suppression). In the light of the recent finding that F requires DnaA protein for both establishment and maintenance, integrative suppression of 11 dnaA(Ts) mutations by a mini-F, pML31, integrated near oriC was examined. The plating efficiency of integratively suppressed strains was dnaA(Ts) allele-dependent and medium-dependent. The initiation capability of suppressed dnaA(Ts) strains lacking the oriC site and their F- counterparts was determined at various temperatures between 30°C and 42°C. The degree of integrative suppression measured by the initiation capability varied in a dnaA(Ts) allele-dependent manner. F-directed DNA replication was most affected by the dnaA(Ts) mutations mapping in the middle of the gene whereas oriC-dependent replication was most thermosensitive in strains carrying mutations mapping in the carboxy-terminal half of the gene. The results indicated that the integrative suppression by F plasmid is a DnaA-dependent process and suggested that the requirements for DnaA protein in the oriC-dependent replication and F replication processes are qualitatively different.  相似文献   
53.
Carbohydrates and proteins in surface water during a bloom ofMictrocystis, which is the dominant summer phytoplankton in Lake Suwa, were analyzed in order to evaluate the function ofMicrocystis in organic matter metabolism. Glucose was the predominant sugar constituent of the cellular carbohydrate fraction and decreased in quantity from inside towards the outside of the cell through the slime layer. Other constituent sugars, on the other hand, were present in larger proportions in the lake water. Although the sugar composition of the cells did not change in July and August, during the first period of theMicrocystis bloom, it changed appreciably in September when the water temperature decreased below 20°C accompanied by the decrease in solar radiation and a marked change in nutrient concentration. It appears that the sugar composition of the cells may change in response to some environmental stresses. In addition, a temporal change in the sugar composition was found, particularly in the fraction containing the slime extracted by shaking. Among the constituent amino acids of the cells, the percentage of arginine, aspartic acid and leucine decreased from inside toward the outside of the cell, while glutamic acid, threonine, serine and glycine showed an opposite trend. In contrast to the carbohydrates, the percentage composition of each amino acid varied little throughout the period of the bloom.  相似文献   
54.
In the Escherichia coli dnaB mutant BT165/70 were observed two types of temperature sensitivity of DNA replication: one slow but irreversible, occurring before the initiation of DNA replication, and the other instant but reversible, occurring during replication. These two types of temperature sensitivity appear to result from the single dnaB mutation. The observation suggests two different states of the dnaB gene product within the cell. Interaction of the dnaB protein with other components of the hypothetical replication complex is suggested. A temperature-insensitive revertant (second site mutation) of BT165/70 was isolated whose phenotype suggests an alteration in the interacting ability of the revertant protein.  相似文献   
55.
Thraustochytrids are known to synthesize PUFAs such as docosahexaenoic acid (DHA). Accumulating evidence suggests the presence of two synthetic pathways of PUFAs in thraustochytrids: the polyketide synthase-like (PUFA synthase) and desaturase/elongase (standard) pathways. It remains unclear whether the latter pathway functions in thraustochytrids. In this study, we report that the standard pathway produces PUFA in Thraustochytrium aureum ATCC 34304. We isolated a gene encoding a putative Δ12-fatty acid desaturase (TauΔ12des) from T. aureum. Yeasts transformed with the tauΔ12des converted endogenous oleic acid (OA) into linoleic acid (LA). The disruption of the tauΔ12des in T. aureum by homologous recombination resulted in the accumulation of OA and a decrease in the levels of LA and its downstream PUFAs. However, the DHA content was increased slightly in tauΔ12des-disruption mutants, suggesting that DHA is primarily produced in T. aureum via the PUFA synthase pathway. The transformation of the tauΔ12des-disruption mutants with a tauΔ12des expression cassette restored the wild-type fatty acid profiles. These data clearly indicate that TauΔ12des functions as Δ12-fatty acid desaturase in the standard pathway of T. aureum and demonstrate that this thraustochytrid produces PUFAs via both the PUFA synthase and the standard pathways.  相似文献   
56.
Parasporin-2 is a protein toxin that is isolated from parasporal inclusions of the Gram-positive bacterium Bacillus thuringiensis. Although B. thuringiensis is generally known as a valuable source of insecticidal toxins, parasporin-2 is not insecticidal, but has a strong cytocidal activity in liver and colon cancer cells. The 37-kDa inactive nascent protein is proteolytically cleaved to the 30-kDa active form that loses both the N-terminal and the C-terminal segments. Accumulated cytological and biochemical observations on parasporin-2 imply that the protein is a pore-forming toxin. To confirm the hypothesis, we have determined the crystal structure of its active form at a resolution of 2.38 Å. The protein is unusually elongated and mainly comprises long β-strands aligned with its long axis. It is similar to aerolysin-type β-pore-forming toxins, which strongly reinforce the pore-forming hypothesis. The molecule can be divided into three domains. Domain 1, comprising a small β-sheet sandwiched by short α-helices, is probably the target-binding module. Two other domains are both β-sandwiches and thought to be involved in oligomerization and pore formation. Domain 2 has a putative channel-forming β-hairpin characteristic of aerolysin-type toxins. The surface of the protein has an extensive track of exposed side chains of serine and threonine residues. The track might orient the molecule on the cell membrane when domain 1 binds to the target until oligomerization and pore formation are initiated. The β-hairpin has such a tight structure that it seems unlikely to reform as postulated in a recent model of pore formation developed for aerolysin-type toxins. A safety lock model is proposed as an inactivation mechanism by the N-terminal inhibitory segment.  相似文献   
57.
Cytosolic Hsc70/Hsp70 are known to contribute to the endoplasmic reticulum (ER)-associated degradation of membrane proteins. However, at least in mammalian cells, its partner ER-localized J-protein for this cellular event has not been identified. Here we propose that this missing protein is DNAJB12. Protease protection assay and immunofluorescence study revealed that DNAJB12 is an ER-localized single membrane-spanning protein carrying a J-domain facing the cytosol. Using co-immunoprecipitation assay, we found that DNAJB12 is able to bind Hsc70 and thus can recruit Hsc70 to the ER membrane. Remarkably, cellular overexpression of DNAJB12 accelerated the degradation of misfolded membrane proteins including cystic fibrosis transmembrane conductance regulator (CFTR), but not a misfolded luminal protein. The DNAJB12-dependent degradation of CFTR was compromised by a proteasome inhibitor, lactacystin, suggesting that this process requires the ubiquitin-proteasome system. Conversely, knockdown of DNAJB12 expression attenuated the degradation of CFTR. Thus, DNAJB12 is a novel mammalian ER-localized J-protein that plays a vital role in the quality control of membrane proteins.  相似文献   
58.
A fluorescent analogue of ceramide, C12-NBD-ceramide, was found to be hydrolyzed much faster than 14C-labeled ceramide by alkaline ceramidase from Pseudomonas aeruginosa and neutral ceramidase from mouse liver, while this substrate was relatively resistant to acid ceramidase from plasma of the horseshoe crab. The radioactive substrate was used more preferentially by the acid ceramidase. It should be noted that C6-NBD-ceramide, which is usually used for ceramidase assays, was hardly hydrolyzed by any of the enzymes examined, compared to C12-NBD-ceramide. For the alkaline and neutral enzymes, the Vmax and k (Vmax/Km) with C12-NBD-ceramide were much higher than those with 14C-ceramide. In contrast, for the acid enzyme these parameters with C12-NBD-ceramide were less than half those with the radioisotope-labeled substrate. It is noteworthy that the labeling of ceramide with NBD did not itself reduce the Km of the alkaline enzyme, but did that of the neutral enzyme. It was also found that C12-NBD-ceramide was preferentially hydrolyzed by the alkaline and neutral enzymes, but not the acid one, in several mammalian cell lines. This study clearly shows that the attachment of NBD, but not dansyl, increases the susceptibility of ceramide to alkaline and neutral enzyme, and decreases that to acid enzymes. Thus the use of this substrate provides a specific and sensitive assay for alkaline and neutral ceramidases.  相似文献   
59.
We previously reported the purification and characterization of a novel type of alkaline ceramidase from Pseudomonas aeruginosa strain AN17 (Okino, N., Tani, M., Imayama, S., and Ito, M. (1998) J. Biol. Chem. 273, 14368-14373). Here, we report the molecular cloning, sequencing, and expression of the gene encoding the ceramidase of this strain. Specific oligonucleotide primers were synthesized using the peptide sequences of the purified ceramidase obtained by digestion with lysylendopeptidase and used for polymerase chain reaction. DNA fragments thus amplified were used as probes to clone the gene encoding the ceramidase from a genomic library of strain AN17. The open reading frame of 2,010 nucleotides encoded a polypeptide of 670 amino acids including a signal sequence of 24 residues, 64 residues of which matched the amino acid sequence determined for the purified enzyme. The molecular weight of the mature enzyme was estimated to be 70,767 from the deduced amino acid sequence. Expression of the ceramidase gene in Escherichia coli, resulted in production of a soluble enzyme with the identical N-terminal amino acid sequence. Recombinant ceramidase was purified to homogeneity from the lysate of E. coli cells and confirmed to be identical to the Pseudomonas enzyme in its specificity and other enzymatic properties. No significant sequence similarities were found in other known functional proteins including human acid ceramidase. However, we found a sequence homologous to the ceramidase in hypothetical proteins encoded in Mycobacterium tuberculosis, Dictyostelium discoideum, and Arabidopsis thaliana. The homologue of the ceramidase gene was thus cloned from an M. tuberculosis cosmid and expressed in E. coli, and the gene was demonstrated to encode an alkaline ceramidase. This is the first report for the cloning of an alkaline ceramidase.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号