首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   230篇
  免费   10篇
  2023年   3篇
  2022年   1篇
  2021年   1篇
  2019年   4篇
  2018年   5篇
  2017年   3篇
  2016年   1篇
  2015年   6篇
  2014年   7篇
  2013年   7篇
  2012年   8篇
  2011年   8篇
  2010年   3篇
  2009年   6篇
  2008年   13篇
  2007年   15篇
  2006年   5篇
  2005年   13篇
  2004年   13篇
  2003年   12篇
  2002年   13篇
  2001年   6篇
  2000年   9篇
  1999年   5篇
  1998年   4篇
  1997年   1篇
  1996年   3篇
  1995年   3篇
  1994年   4篇
  1993年   6篇
  1992年   5篇
  1991年   6篇
  1990年   6篇
  1989年   5篇
  1988年   2篇
  1987年   4篇
  1986年   3篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1975年   2篇
  1967年   1篇
  1964年   1篇
  1938年   1篇
排序方式: 共有240条查询结果,搜索用时 125 毫秒
201.
202.
Mitochondrial functional and structural impairment and generation of oxidative stress have been implicated in aging, various diseases and chemotherapies. This study analyzed azidothymidine (AZT)-caused failures in mitochondrial functions, in redox regulation and activation of the HIV-1 gene expression. We monitored intracellular concentrations of ATP and glutathione (GSH) as the indicators of energy production and redox conditions, respectively, during the time-course experiments with U937 and MOLT4 human lymphoid cells in the presence of AZT (0.05 mg x mL(-1)) or H(2)O(2) (0.01 mm) for 15-25 days. Mitochondrial DNA integrity and NF-kappa B-driven HIV-1 promoter activity were also assessed. ATP concentration began to decrease within several days after exposure to AZT or H(2)O(2), and the decrease continued to reach 30-40% of the normal level. However, decline of GSH was detectable after a retention period for at least 5-6 days, and progressed likewise. PCR analyses found that mitochondrial DNA destruction occurred when the ATP and GSH depletion had progressed, detecting a difference in the deletion pattern between AZT and H(2)O(2)-treated cells. The GSH decrease coincided with HIV-1 promoter sensitization detected by enhanced DNA binding ability of NF-kappa B and induction of the gene expression upon H(2)O(2)-rechallenge. Our results suggest that, in the process of AIDS myopathy development, AZT or oxidative agents directly impair the energy-producing system of mitochondria, causing dysfunction of cellular redox control, which eventually leads to loss of the mitochondrial DNA integrity. The mechanism of cellular redox condition-mediated NF-kappa B activation is discussed.  相似文献   
203.
204.
We demonstrate the existence of nerve fibers possessing substance P (SP) and calcitonin gene-related peptide (CGRP) immunoreactivity in the mouse cervical ventral roots. The distribution of the SP and CGRP fibers was similar, but CGRP fibers were generally more numerous. Both types entered the ventral pia mater or formed hairpin loops, but they did not enter the spinal cord directly through these roots. SP and CGRP fibers in the ventral roots were thin and had many varicosities. We suggest that these SP and CGRP fibers are involved not only in a sensory mechanism, but also in other functions, via the release of SP and CGRP from varicosities in the ventral roots.  相似文献   
205.
Partial cDNA and genomic clones of rat stem cell factor (SCF) have been isolated. Using probes based on the rat sequence, partial and full-length cDNA and genomic clones of human SCF have been isolated. Based on the primary structure of the 164 amino acid protein purified from BRL-3A cells, truncated forms of the rat and human proteins have been expressed in E. coli and mammalian cells and have been shown to possess biological activity. SCF is able to augment the proliferation of both myeloid and lymphoid hematopoietic progenitors in bone marrow cultures. SCF exhibits potent synergistic activities in conjunction with colony-stimulating factors, resulting in increased colony numbers and colony size.  相似文献   
206.
207.
Sialyltransferases are a family of glycosyltransferases that catalyze the transfer of N-acetylneuraminic acid residues from cytidine monophosphate N-acetylneuraminic acid (CMP-NeuAc) as a donor substrate to the carbohydrate groups of glycoproteins and glycolipids as acceptor substrates. We determined the crystal structure of Delta16psp26ST, the N-terminal truncated form of alpha2,6-sialyltransferase from Vibrionaceae Photobacterium sp. JT-ISH-224, complexed with a donor product CMP and an acceptor substrate lactose. Delta16psp26ST has three structural domains. Domain 1 belongs to the immunoglobulin-like beta-sandwich fold, and domains 2 and 3 form the glycosyltransferase-B structure. The CMP and lactose were bound in the deep cleft between domains 2 and 3. In the structure, only Asp232 was within hydrogen-binding distance of the acceptor O6 carbon of the galactose residue in lactose, and His405 was within hydrogen-binding distance of the phosphate oxygen of CMP. Mutation of these residues greatly decreased the activity of the enzyme. These structural and mutational results indicated that Asp232 might act as a catalytic base for deprotonation of the acceptor substrate, and His405 might act as a catalytic acid for protonation of the donor substrate. These findings are consistent with an in-line-displacement reaction mechanism in which Delta16psp26ST catalyzes the inverting transfer reaction. Unlike the case with multifunctional sialyltransferase (Delta24PmST1) complexed with CMP and lactose, the crystal structure of which was recently reported, the alpha2,6 reaction specificity of Delta16psp26ST is likely to be determined by His123.  相似文献   
208.
The activity of lysosomal acid β-glucocerebrosidase (AGC, EC 3.2.1.45), which hydrolyzes the O-glycosidic linkage between d-glucose and ceramide of glucosylceramide (GlcCer), is a marker for the diagnosis of Gaucher disease because the disease is caused by dysfunction of AGC due to mutations in the gene. The activity of AGC is potently inhibited by conduritol B epoxide (CBE), whereas CBE-insensitive nonlysosomal neutral β-glucocerebrosidase (NGC) activities have been found in various vertebrates, including humans. We report here a new reliable method to determine AGC as well as NGC activities using normal-phase high-performance liquid chromatography (HPLC) and NBD (4-nitrobenzo-2-oxa-1,3-diazole)- or BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene)-labeled GlcCer as a substrate. The reaction products of the enzymes, C6-NBD-ceramide and C12-BODIPY-ceramide, were clearly separated from the corresponding substrates on a normal-phase column within 5 min using a different solvent system. Reaction products could be detected quantitatively at concentrations ranging from 50 fmol to 50 pmol for C6-NBD-ceramide and from 10 fmol to 5 pmol for C12-BODIPY-ceramide. Vmax/Km values of human fibroblast AGC for fluorescent GlcCer were much higher than those for 4-methylumbelliferyl-β-d-glucoside (4MU-Glc), which is used prevalently for Gaucher disease diagnosis. As a result, AGC activity was detected quantitatively using fluorescent GlcCer, but not 4MU-Glc, using 5 μl of human serum or 1 × 104 cultured human fibroblasts. The current method clearly showed the decrease of AGC activities in fibroblasts and serum from the patient with Gaucher disease compared with normal individuals, suggesting that the method is applicable for the diagnosis of Gaucher disease. Furthermore, this method was found to be useful for measuring the activities of nonlysosomal NGC of various cells and tissues in the presence of CBE.  相似文献   
209.
Human cytosolic β-glucosidase, also known as klotho-related protein (KLrP, GBA3), is an enzyme that hydrolyzes various β-d-glucosides, including glucosylceramide. We recently reported the crystal structure of KLrP in complex with glucose [Y. Hayashi, N. Okino, Y. Kakuta, T. Shikanai, M. Tani, H. Narimatsu, M. Ito, Klotho-related protein is a novel cytosolic neutral beta-glycosylceramidase, J. Biol. Chem. 282 (2007) 30889-30900]. Here, we report the crystal structure of a covalent intermediate of the KLrP mutant E165Q, in which glucose was covalently bound to a nucleophile, Glu373. The structure confirms the double displacement mechanism of the retaining β-glucosidase. In addition, the structure suggests that a water molecule could be involved in the stabilization of transition states through a sugar, 2-hydroxyl.  相似文献   
210.
In mineral salts medium under oxygen deprivation, Corynebacterium glutamicum exhibits high productivity of l-lactic acid accompanied with succinic and acetic acids. In taking advantage of this elevated productivity, C. glutamicum was genetically modified to produce d-lactic acid. The modification involved expression of fermentative d-lactate dehydrogenase (d-LDH)-encoding genes from Escherichia coli and Lactobacillus delbrueckii in l-lactate dehydrogenase (l-LDH)-encoding ldhA-null C. glutamicum mutants to yield strains C. glutamicum ΔldhA/pCRB201 and C. glutamicum ΔldhA/pCRB204, respectively. The productivity of C. glutamicum ΔldhA/pCRB204 was fivefold higher than that of C. glutamicum ΔldhA/pCRB201. By using C. glutamicum ΔldhA/pCRB204 cells packed to a high density in mineral salts medium, up to 1,336 mM (120 g l−1) of d-lactic acid of greater than 99.9% optical purity was produced within 30 h.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号