首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5462篇
  免费   306篇
  国内免费   7篇
  5775篇
  2022年   27篇
  2021年   45篇
  2020年   39篇
  2019年   52篇
  2018年   75篇
  2017年   49篇
  2016年   96篇
  2015年   150篇
  2014年   168篇
  2013年   369篇
  2012年   298篇
  2011年   344篇
  2010年   217篇
  2009年   231篇
  2008年   345篇
  2007年   379篇
  2006年   360篇
  2005年   353篇
  2004年   379篇
  2003年   353篇
  2002年   354篇
  2001年   47篇
  2000年   37篇
  1999年   64篇
  1998年   90篇
  1997年   65篇
  1996年   61篇
  1995年   68篇
  1994年   50篇
  1993年   71篇
  1992年   50篇
  1991年   40篇
  1990年   46篇
  1989年   34篇
  1988年   36篇
  1987年   30篇
  1986年   35篇
  1985年   25篇
  1984年   30篇
  1983年   27篇
  1982年   24篇
  1981年   22篇
  1980年   18篇
  1979年   12篇
  1978年   13篇
  1977年   11篇
  1976年   11篇
  1974年   8篇
  1973年   10篇
  1968年   8篇
排序方式: 共有5775条查询结果,搜索用时 0 毫秒
51.
We examined the effect of administering an isoflavone-rich fermented soybean extract (FSBE) on the serum cholesterol concentrations in male rats and in intact and ovariectomized (OVX) female rats. Dietary FSBE decreased the serum cholesterol concentrations in intact female and OVX rats, but did not affect the concentrations in male rats. Dietary FSBE increased the hepatic total and esterified cholesterol contents in the intact female rats, but decreased them in the OVX rats. This hypocholesterolemic effect was not a simple estrogenic effect because it has appeared in some reports that estrogen administration decreased serum cholesterol both male and female rats. Dietary FSBE increased the hepatic low-density lipoprotein receptor (LDLR) gene expression in the intact female rats as has previously been reported from many studies, but did not affect that of the OVX rats. Further investigation is needed into the hypocholesterolemic mechanism of FSBE.  相似文献   
52.
53.
The biodegradation of poly(L-lactide) (PLA) is reviewed. The important role of actinomycetes in PLA degradation is emphasized. These PLA-degrading actinomycetes belong phylogenetically to the Pseudonocardiaceae family and related genera, including Amycolatopsis, Lentzea, Streptoalloteichus, Kibdelosporangium and Saccharothrix. A PLA-degrading enzyme purified from an isolated Amycolatopsis strain-41 has substrate specificity on PLA higher than proteinase K. The application of these strains and their enzymes can be effectively used for biological treatment of plastic wastes containing PLA.  相似文献   
54.
Aquaporin adipose (AQPap), which we identified from human adipose tissue, is a glycerol channel in adipocyte [Kishida et al. (2000) J. Biol. Chem. 275, 20896-20902]. In the current study, we determined the genomic structure of the human AQPap gene, and identified three AQPap-like genes that resembled (approximately 95%) AQPap, with little expression in human tissues. The AQPap promoter contained a putative peroxisome proliferator response element (PPRE) at -46 to -62, and a putative insulin response element (IRE) at -542/-536. Deletion of the PPRE abolished the pioglitazone-mediated induction of AQPap promoter activity in 3T3-L1 adipocytes. Deletion and single base pair substitution analysis of the IRE abolished the insulin-mediated suppression of the human AQPap gene. Analysis of AQPap sequence in human subjects revealed three missense mutations (R12C, V59L and G264V), and two silent mutations (A103A and G250G). The cRNA injection of the missense mutants into Xenopus oocytes revealed the absence of the activity to transport glycerol and water in the AQPap-G264V protein. In the subject homozygous for AQPap-G264V, exercise-induced increase in plasma glycerol was not observed in spite of the increased plasma noradrenaline. We suggest that AQPap is responsible for the increase of plasma glycerol during exercise in humans.  相似文献   
55.
Biosynthesis of branched glucan by Pestalotiopsis from media containing D-(1-13C)glucose, D-(2-13C)glucose, D-(4-13C)glucose, D-(6-13C)glucose or a mixture of D-(1-13C)glucose and D-(2-13C)glucose was carried out to elucidate biosynthetic mechanism of branched polysaccharides. 13C NMR spectra of the labeled polysaccharides were determined and assigned. Analysis of 13C NMR spectra of glucitol acetates obtained from hydrolysates of the labeled branched polysaccharides indicated that transfer of labeling from C-1 to C-3 and C-6 carbons, from C-2 to C-1, C-3 and C-5 carbons, and from C-6 to C-1 carbon. From the results the percentages of routes via which the polysaccharide is biosynthesized are estimated. They show that the biosynthesis of the polysaccharide via the Embden-Meyerhof pathway and that from lipids and proteins are more active, and the pentose cycle is less active, than in the biosynthesis of cellulose and curdlan. As for the results, labeling at C-6 carbon in the branched polysaccharide cultured from D-(6-13C)glucose was low, compared to that of cellulose and curdlan.  相似文献   
56.
Summary Crystallographic analysis of the highly alkaline M-protease from an alkaliphilic Bacillus strain shows the occurrence of a unique salt bridge triad Arg19–Glu271–Arg275 (in subtilisin BPN′ numbering), which is not found in less alkaline true subtilisins BPN′ and Carlsberg from Bacillus amyloliquefaciens and Bacillus licheniformis, respectively. Because the corresponding residues are all Gln residue in the subtilisin BPN′, Gln residue was engineered into the position(s) 19, 271 and/or 275 in M-protease by site-directed mutagenesis. Disruptions of the salt bridge caused the reduction of the thermostability of the mutant proteins at alkaline pH with the following decreasing order of thermal inactivation rate; the wild-type > Arg275 → Gln > Glu271 → Gln > Arg19 → Gln/Glu271 → Gln/Arg275 → Gln > Arg19 → Gln. This result provides the evidence that the salt bridge triad contributes to the thermostability and structural rigidity of the highly alkaline M-protease.  相似文献   
57.
Myostatin, a member of the transforming growth factor (TGF)-β superfamily, plays a potent inhibitory role in regulating skeletal muscle mass. Inhibition of myostatin by gene disruption, transgenic (Tg) expression of myostatin propeptide, or injection of propeptide or myostatin antibodies causes a widespread increase in skeletal muscle mass. Several peptides, in addition to myostatin propeptide and myostatin antibodies, can bind directly to and neutralize the activity of myostatin. These include follistatin and follistatin-related gene. Overexpression of follistatin or follistatin-related gene in mice increased the muscle mass as in myostatin knockout mice. Follistatin binds to myostatin but also binds to and inhibits other members of the TGF-β superfamily, notably activins. Therefore, follistatin regulates both myostatin and activins in vivo. We previously reported the development and characterization of several follistatin-derived peptides, including FS I-I (Nakatani M, Takehara Y, Sugino H, Matsumoto M, Hashimoto O, Hasegawa Y, Murakami T, Uezumi A, Takeda S, Noji S, Sunada Y, Tsuchida K. FASEB J 22: 477-487, 2008). FS I-I retained myostatin-inhibitory activity without affecting the bioactivity of activins. Here, we found that inhibition of myostatin increases skeletal muscle mass and decreases fat accumulation in FS I-I Tg mice. FS I-I Tg mice also showed decreased fat accumulation even on a control diet. Interestingly, the adipocytes in FS I-I Tg mice were much smaller than those of wild-type mice. Furthermore, FS I-I Tg mice were resistant to high-fat diet-induced obesity and hepatic steatosis and had lower hepatic fatty acid levels and altered fatty acid composition compared with control mice. FS I-I Tg mice have improved glucose tolerance when placed on a high-fat diet. These data indicate that inhibiting myostatin with a follistatin-derived peptide provides a novel therapeutic option to decrease adipocyte size, prevent obesity and hepatic steatosis, and improve glucose tolerance.  相似文献   
58.
The pericentriolar material (PCM) that accumulates around the centriole expands during mitosis and nucleates microtubules. Here, we show the cooperative roles of the centriole and PCM scaffold proteins, pericentrin and CDK5RAP2, in the recruitment of CEP192 to spindle poles during mitosis. Systematic depletion of PCM proteins revealed that CEP192, but not pericentrin and/or CDK5RAP2, was crucial for bipolar spindle assembly in HeLa, RPE1, and A549 cells with centrioles. Upon double depletion of pericentrin and CDK5RAP2, CEP192 that remained at centriole walls was sufficient for bipolar spindle formation. In contrast, through centriole removal, we found that pericentrin and CDK5RAP2 recruited CEP192 at the acentriolar spindle pole and facilitated bipolar spindle formation in mitotic cells with one centrosome. Furthermore, the perturbation of PLK1, a critical kinase for PCM assembly, efficiently suppressed bipolar spindle formation in mitotic cells with one centrosome. Overall, these data suggest that the centriole and PCM scaffold proteins cooperatively recruit CEP192 to spindle poles and facilitate bipolar spindle formation.  相似文献   
59.
Cutaneous leishmaniasis (CL) is gaining attention as a public health problem. We present two cases of CL imported from Syria and Venezuela in Japan. We diagnosed them as CL non-invasively by the direct boil loop-mediated isothermal amplification method and an innovative sequencing method using the MinION? sequencer. This report demonstrates that our procedure could be useful for the diagnosis of CL in both clinical and epidemiological settings.  相似文献   
60.
The sericulture industry plays a very important role in our national economy. Silkworm (Bombyx mori) is always regarded as a model animal and biological reactor. There have been detailed studies on the structure, expression and control and molecular evolution of silk genes. However, few, if any, reports are available on the localization of structural genes in silkworm by molecular cytogenetics. The present experiment has tentatively localized theFib-H gene at the distal end of the 25th linkage group, namely at the 25-0.0 position, and verified thatFib-H has only one locus, thus providing a temporary solution to the problem about its localization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号