首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2314篇
  免费   145篇
  2459篇
  2022年   7篇
  2021年   14篇
  2020年   16篇
  2019年   18篇
  2018年   26篇
  2017年   16篇
  2016年   42篇
  2015年   59篇
  2014年   63篇
  2013年   199篇
  2012年   146篇
  2011年   129篇
  2010年   87篇
  2009年   83篇
  2008年   155篇
  2007年   166篇
  2006年   155篇
  2005年   137篇
  2004年   161篇
  2003年   151篇
  2002年   145篇
  2001年   22篇
  2000年   20篇
  1999年   29篇
  1998年   37篇
  1997年   36篇
  1996年   25篇
  1995年   31篇
  1994年   16篇
  1993年   25篇
  1992年   25篇
  1991年   22篇
  1990年   20篇
  1989年   9篇
  1988年   16篇
  1987年   12篇
  1986年   14篇
  1985年   16篇
  1984年   18篇
  1983年   10篇
  1982年   12篇
  1981年   7篇
  1980年   8篇
  1979年   7篇
  1978年   5篇
  1977年   4篇
  1976年   7篇
  1974年   4篇
  1973年   6篇
  1972年   4篇
排序方式: 共有2459条查询结果,搜索用时 0 毫秒
51.
52.
53.
To elucidate the role of shear stress in fluid-phase endocytosis of vascular endothelial cells (EC), we used a rotating-disk shearing apparatus to investigate the effects of shear stress on the uptake of lucifer yellow (LY) by cultured bovine aortic endothelial cells (BAEC). Exposure of EC to shear stress (area-mean value of 10 dynes/cm2) caused an increase in LY uptake that was abrogated by the antioxidant, N-acetyl-L-cysteine (NAC), the NADPH oxidase inhibitor, acetovanillone, and two inhibitors of protein kinase C (PKC), calphostin C and GF109203X. These results suggest that fluid-phase endocytosis is regulated by both reactive oxygen species (ROS) and PKC. Shear stress increased both ROS production and PKC activity in EC, and the increase in ROS was unaffected by calphostin C or GF109203X, whereas the activation of PKC was reduced by NAC and acetovanillone. We conclude that shear stress-induced increase in fluid-phase endocytosis is mediated via ROS generation followed by PKC activation in EC.  相似文献   
54.
To determine relationships between Helicobacter pylori geographical origin and type II methylase activity, we examined 122 strains from various locations around the world for methylase expression. Most geographic regions possessed at least one strain resistant to digestion by each of 14 restriction endonucleases studied. Across all of the strains studied, the average number of active methylases was 8.2 ± 1.9 with no significant variation between the major geographic regions. Although seven pairs of isolates showed the same susceptibility patterns, their cagA/vacA status differed, and the remaining 108 strains each possessed unique patterns of susceptibility. From a single clonal group, 15 of 18 strains showed identical patterns of resistance, but diverged with respect to M.MboII activity. All of the methylases studied were present in all major human population groupings, suggesting that their horizontal acquisition pre-dated the separation of these populations. For the hpyV and hpyAIV restriction-modification systems, an in-depth analysis of genotype, indicating extensive diversity of cassette size and chromosomal locations regardless of the susceptibility phenotype, points toward substantial strain-specific selection involving these loci.  相似文献   
55.
We investigated the effect of magnesium supplementation on zinc distribution in rats given excess calcium as carbonate. Rats were given a control diet (5 g/kg calcium and 0.5 g/kg magnesium), a high calcium diet (HC, 25 g/kg calcium and 0.5 g/kg magnesium) or the high calcium diet supplied with magnesium (HCM, 25 g/kg calcium and 2.5 g/kg magnesium) for 4 weeks. Calcium carbonate and magnesium oxide were used for increasing these mineral concentrations in diets. Although feed intake did not differ among the groups, the excess calcium suppressed feed efficiency, irrespective of dietary magnesium concentration. Femoral magnesium concentration was lower in the HC group than in the control and the HCM groups. Femoral zinc concentration was higher in the HC group and the HCM group than in the control group. The zinc concentration in the kidney was lower in the HC group and the HCM group than in the control group. The excess calcium did not affect zinc concentration in plasma and other tissues such as the liver, testis, and spleen, irrespective of dietary magnesium. These results suggest that the increasing bone zinc and the decreasing renal zinc do not result from magnesium insufficiency in rats given excess calcium as carbonate.  相似文献   
56.
57.
Abstract

Viral vector systems are efficient for transfection of foreign genes into many tissues. Especially, retrovirus based vectors integrate the transgene into the genome of the target cells, which can sustain long term expression. However, it has been demonstrated that the transduction efficiency using retrovirus is relatively lower than those of other viruses. Ultrasound was recently reported to increase gene expression using plasmid DNA, with or without, a delivery vehicle. However, there are no reports, which show an ultrasound effect to retrovirus‐mediated gene transfer efficiency.

Retrovirus‐mediated gene transfer systems were used for transfection of 293T cells, bovine aortic endothelial cells (BAECs), rat aortic smooth muscle cells (RASMCs), and rat skeletal muscle myoblasts (L6 cells) with β‐galactosidase (β‐Gal) genes. Transduction efficiency and cell viability assay were performed on 293T cells that were exposed to varying durations (5 to 30 seconds) and power levels (1.0 watts/cm2 to 4.0 watts/cm2) of ultrasound after being transduced by a retrovirus. Effects of ultrasound to the retrovirus itself was evaluated by transduction efficiency of 293T cells. After exposure to varying power levels of ultrasound to a retrovirus for 5 seconds, 293T cells were transduced by a retrovirus, and transduction efficiency was evaluated.

Below 1.0 watts/cm2 and 5 seconds exposure, ultrasound showed increased transduction efficiency and no cytotoxicity to 293T cells transduced by a retrovirus. Also, ultrasound showed no toxicity to the virus itself at the same condition. Exposure of 5 seconds at the power of 1.0 watts/cm2 of an ultrasound resulted in significant increases in retrovirus‐mediated gene expression in all four cell types tested in this experiment. Transduction efficiencies by ultrasound were enhanced 6.6‐fold, 4.8‐fold, 2.3‐fold, and 3.2‐fold in 293T cells, BAECs, RASMCs, and L6 cells, respectively. Furthermore, β‐Gal activities were also increased by the retrovirus with ultrasound exposure in these cells.

Adjunctive ultrasound exposure was associated with enhanced retrovirus‐mediated transgene expression in vitro. Ultrasound associated local gene therapy has potential for not only plasmid‐DNA‐, but also retrovirus‐mediated gene transfer.  相似文献   
58.
Heterotrimeric GTP-binding proteins (G proteins) and mitogen-activated protein kinase (MAPK) cascades involve vegetative hyphal growth, development of infection-related structure, colonization in host plant and female fertility in phytopathogenic ascomycete fungi. In this study, a heterotrimeric G protein β subunit (Gβ), GPB1, and MAPK, MPK1, were characterized from Fusarium sacchari (= Gibberella sacchari; mating population B of the G. fujikuroi-species complex). GPB1 and MPK1 showed high homology to known Gβ and Fus3/Kss1 MAP kinases of other filamentous ascomycetes, respectively. Disruption (Δ) of gpb1 suppressed hyphal branching and accelerated aerial hyphae formation in F. sacchari. Oppositely, disruption of mpk1 caused delayed aerial hyphae formation. These indicated that GPB1 regulates vegetative hyphal growth negatively, and MPK1 does positively in F. sacchari. Both Δgpb1 and Δmpk1 showed female sterility. Level of intracellular cAMP in Δgpb1 was lower than wild type. Exogenous cyclic AMP (cAMP) partially restored enhanced aerial hyphae formation. These suggested that abnormal hyphal growth was caused by depletion of intracellular cAMP in Δgpb1. cAMP has been reported to suppress development of perithecia in crossing between wild type strains. Thus, precise regulation of intracellular cAMP level via Gβ/MAPK is essential for normal hyphal growth and fertility.  相似文献   
59.
piRNA (PIWI-interacting RNA) is a germ cell–specific small RNA in which biogenesis PIWI (P-element wimpy testis) family proteins play crucial roles. MILI (mouse Piwi-like), one of the three mouse PIWI family members, is indispensable for piRNA production, DNA methylation of retrotransposons presumably through the piRNA, and spermatogenesis. The biogenesis of piRNA has been divided into primary and secondary processing pathways; in both of these MILI is involved in mice. To analyze the molecular function of MILI in piRNA biogenesis, we utilized germline stem (GS) cells, which are derived from testicular stem cells and possess a spermatogonial phenotype. We established MILI-null GS cell lines and their revertant, MILI-rescued GS cells, by introducing the Mili gene with Sendai virus vector. Comparison of wild-type, MILI-null, and MILI-rescued GS cells revealed that GS cells were quite useful for analyzing the molecular mechanisms of piRNA production, especially the primary processing pathway. We found that glycerol-3-phosphate acyltransferase 2 (GPAT2), a mitochondrial outer membrane protein for lysophosphatidic acid, bound to MILI using the cells and that gene knockdown of GPAT2 brought about impaired piRNA production in GS cells. GPAT2 is not only one of the MILI bound proteins but also a protein essential for primary piRNA biogenesis.  相似文献   
60.
We previously reported emergence and disappearance of circadian molecular oscillations during differentiation of mouse embryonic stem (ES) cells and reprogramming of differentiated cells, respectively. Here we present a robust and stringent in vitro circadian clock formation assay that recapitulates in vivo circadian phenotypes. This assay system first confirmed that a mutant ES cell line lacking Casein Kinase I delta (CKIδ) induced ∼3 hours longer period-length of circadian rhythm than the wild type, which was compatible with recently reported results using CKIδ null mice. In addition, this assay system also revealed that a Casein Kinase 2 alpha subunit (CK2α) homozygous mutant ES cell line developed significantly longer (about 2.5 hours) periods of circadian clock oscillations after in vitro or in vivo differentiation. Moreover, revertant ES cell lines in which mutagenic vector sequences were deleted showed nearly wild type periods after differentiation, indicating that the abnormal circadian period of the mutant ES cell line originated from the mutation in the CK2α gene. Since CK2α deficient mice are embryonic lethal, this in vitro assay system represents the genetic evidence showing an essential role of CK2α in the mammalian circadian clock. This assay was successfully applied for the phenotype analysis of homozygous mutant ES cells, demonstrating that an ES cell-based in vitro assay is available for circadian genetic screening.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号