首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2733篇
  免费   173篇
  2022年   9篇
  2021年   17篇
  2020年   15篇
  2019年   22篇
  2018年   22篇
  2017年   17篇
  2016年   43篇
  2015年   59篇
  2014年   61篇
  2013年   193篇
  2012年   166篇
  2011年   135篇
  2010年   99篇
  2009年   99篇
  2008年   170篇
  2007年   175篇
  2006年   172篇
  2005年   153篇
  2004年   183篇
  2003年   166篇
  2002年   163篇
  2001年   53篇
  2000年   27篇
  1999年   57篇
  1998年   40篇
  1997年   41篇
  1996年   27篇
  1995年   34篇
  1994年   18篇
  1993年   27篇
  1992年   40篇
  1991年   36篇
  1990年   46篇
  1989年   33篇
  1988年   27篇
  1987年   30篇
  1986年   20篇
  1985年   31篇
  1984年   25篇
  1983年   18篇
  1982年   17篇
  1981年   12篇
  1980年   10篇
  1979年   14篇
  1978年   11篇
  1977年   7篇
  1976年   10篇
  1974年   6篇
  1973年   8篇
  1972年   6篇
排序方式: 共有2906条查询结果,搜索用时 15 毫秒
991.
Array-based comparative genomic hybridization (aCGH) using bacterial artificial chromosomes (BAC) is a powerful method to analyze DNA copy number aberrations of the entire human genome. In fact, CGH and aCGH have revealed various DNA copy number aberrations in numerous cancer cells and cancer cell lines examined so far. In this report, BAC aCGH was applied to evaluate the stability or instability of cell lines. Established cell lines have greatly contributed to advancements in not only biology but also medical science. However, cell lines have serious problems, such as alteration of biological properties during long-term cultivation. Firstly, we investigated two cancer cell lines, HeLa and Caco-2. HeLa cells, established from a cervical cancer, showed significantly increased DNA copy number alterations with passage time. Caco-2 cells, established from a colon cancer, showed no remarkable differences under various culture conditions. These results indicate that BAC aCGH can be used for the evaluation and validation of genomic stability of cultured cells. Secondly, BAC aCGH was applied to evaluate and validate the genomic stabilities of three patient's mesenchymal stem cells (MSCs), which were already used for their treatments. These three MSCs showed no significant differences in DNA copy number aberrations over their entire chromosomal regions. Therefore, BAC aCGH is highly recommended for use for a quality check of various cells before using them for any kind of biological investigation or clinical application.  相似文献   
992.
Although oral ovabumin (OVA) administration suppressed the antibody (Ab) response in OVA-immunized mice, Lactococcus lactis increased OVA-specific IgG2a in these mice. L. lactis increased the casein-specific IgG level in NC/Nga mice fed on a casein diet. The percentage of CD4(+)CD25(+) cells was increased in DO11.10 mice orally given OVA, but this increase of CD4(+)CD25(+) cells were suppressed in L. lactis-fed DO11.10 mice.  相似文献   
993.
Five new prenylated acylphloroglucinols, yojironins E-Ι (1-5), were isolated from the whole plants of Hypericum yojiroanum. Their structures were elucidated by spectroscopic data. Yojironin E (1) exhibited antimicrobial activity against Aspergillus niger, Candida albicans, Cryptococcus neoformans, and Trichophyton mentagrophytes.  相似文献   
994.
Eggerthella sp. strain YY7918 was isolated from the intestinal flora of a healthy human. It metabolizes daidzein (a soybean isoflavonoid) and produces S-equol, which has stronger estrogenic activities than daidzein. Here, we report the finished and annotated genomic sequence of this organism.  相似文献   
995.
RH-RhoGEFs are a family of guanine nucleotide exchange factors that contain a regulator of G protein signaling homology (RH) domain. The heterotrimeric G protein Gα(13) stimulates the guanine nucleotide exchange factor (GEF) activity of RH-RhoGEFs, leading to activation of RhoA. The mechanism by which Gα(13) stimulates the GEF activity of RH-RhoGEFs, such as p115RhoGEF, has not yet been fully elucidated. Here, specific residues in Gα(13) that mediate activation of p115RhoGEF are identified. Mutation of these residues significantly impairs binding of Gα(13) to p115RhoGEF as well as stimulation of GEF activity. These data suggest that the exchange activity of p115RhoGEF is stimulated allosterically by Gα(13) and not through its interaction with a secondary binding site. A crystal structure of Gα(13) bound to the RH domain of p115RhoGEF is also presented, which differs from a previously crystallized complex with a Gα(13)-Gα(i1) chimera. Taken together, these data provide new insight into the mechanism by which p115RhoGEF is activated by Gα(13).  相似文献   
996.
GTP-bound forms of Ras family small GTPases exhibit dynamic equilibrium between two interconverting conformations, "inactive" state 1 and "active" state 2. A great variation exists in their state distribution; H-Ras mainly adopts state 2, whereas M-Ras predominantly adopts state 1. Our previous studies based on comparison of crystal structures representing state 1 and state 2 revealed the importance of the hydrogen-bonding interactions of two flexible effector-interacting regions, switch I and switch II, with the γ-phosphate of GTP in establishing state 2 conformation. However, failure to obtain both state structures from a single protein hampered further analysis of state transition mechanisms. Here, we succeed in solving two crystal structures corresponding to state 1 and state 2 from a single Ras polypeptide, M-RasD41E, carrying an H-Ras-type substitution in residue 41, immediately preceding switch I, in complex with guanosine 5'-(β,γ-imido)triphosphate. Comparison among the two structures and other state 1 and state 2 structures of H-Ras/M-Ras reveal two new structural features playing critical roles in state dynamics; interaction of residues 31/41 (H-Ras/M-Ras) with residues 29/39 and 30/40, which induces a conformational change of switch I favoring its interaction with the γ-phosphate, and the hydrogen-bonding interaction of switch II with its neighboring α-helix, α3-helix, which induces a conformational change of switch II favoring its interaction with the γ-phosphate. The importance of the latter interaction is proved by mutational analyses of the residues involved in hydrogen bonding. These results define the two novel functional regions playing critical roles during state transition.  相似文献   
997.
The sorting nexin (SNX) family proteins, which contain a Phox homology (PX) domain, play crucial roles in regulating the intracellular membrane trafficking of the endocytic pathway. The proper coordination of this pathway is important for axonal elongation; however, little is known about the expression and intracellular dynamics of the SNX members during the formation of the nervous system. Here the authors found that SNX18, which belongs to the Src-homology-3-PX-Bin/Amphiphysin/Rvs domain-containing SNX subfamily, was specifically expressed in differentiating motor neurons in the chick and mouse embryonic spinal cord. The expression of SNX18 in embryonic spinal motor neurons was transient and was downregulated as the neurons matured. The authors further demonstrated that the localization of EGFP-SNX18 in growth cones was dynamically regulated and accumulated especially at areas in contact with permissive substrates. These findings collectively suggest that SNX18 may play an active role in axonal elongation.  相似文献   
998.
The crystal structure of geranylgeranyl reductase (GGR) from Sulfolobus acidocaldarius was determined in order to elucidate the molecular mechanism of the catalytic reaction. The enzyme is a flavoprotein and is involved in saturation of the double bonds on the isoprenoid moiety of archaeal membranes. The structure determined in this study belongs to the p-hydroxybenzoate hydroxylase family in the glutathione reductase superfamily. GGR functions as a monomer and is divided into the FAD-binding, catalytic and C-terminal domains. The catalytic domain has a large cavity surrounded by a characteristic YxWxFPx7-8GxG motif and by the isoalloxazine ring of an FAD molecule. The cavity holds a lipid molecule, which is probably derived from Escherichia coli cells used for over-expression. One of the two forms of the structure clarifies the presence of an anion pocket holding a pyrophosphate molecule, which might anchor the phosphate head of the natural ligands. Mutational analysis supports the suggestion that the three aromatic residues of the YxWxFPx7-8GxG motif hold the ligand in the appropriate position for reduction. Cys47, which is widely conserved in GGRs, is located at the si-side of the isoalloxazine ring of FAD and is shown by mutational analysis to be involved in catalysis. The catalytic cycle, including the FAD reducing factor binding site, is proposed on the basis of the detailed analysis of the structure.  相似文献   
999.
The phylogenetic relationship among freshwater crab species of Geothelphusa from northern Taiwan and the Yaeyama Group of islands (including Iriomote and Ishigaki) in the southern Ryukyus was studied using the mitochondrial genes 16S rRNA and COI. Our results support the hypothesis that speciation of Geothelphusa among these islands was the result of cyclic glaciations and interglaciations during the Pleistocene. Two main clades, one the Taiwan Group (containing several clades, including most Taiwanese Geothelphusa species except Geothelphusa miyazakii but including Geothelphusa minei from Yaeyama), was estimated to be separated from its sister group, the southern Ryukyus-northern Taiwan (SRN) clade (including G. miyazakii, Geothelphusa shokitai, Geothelphusa fulva and G. marginata from northern Taiwan, the Pinnacle Islands [=Diaoyutai Islands or Senkaku Islands] and Yaeyama) at about 5.3 million years ago (mya). G. shokitai was separated from others within the SRN clade at 2.4 mya, but was probably derived from G. miyazakii in northern Taiwan. The ancestor of G. miyazakii is hypothesised to have dispersed from ancestors in Yaeyama and then isolated at 2.0 mya during the Pleistocene interglaciations. This is similar to the speciation of G. minei in Yaeyama at 1.5 mya, except that its ancestors originated from north-eastern Taiwan. Four clades of freshwater crabs are present in the Fushan Botanical Garden, located in the mountainous area of north-eastern Taiwan, which might be due to the historical rearrangements of the drainage and proximity of the various river origins.  相似文献   
1000.
The SLEEPY1 (SLY1) F-box gene is a positive regulator of gibberellin (GA) signaling in Arabidopsis (Arabidopsis thaliana). Loss of SLY1 results in GA-insensitive phenotypes including dwarfism, reduced fertility, delayed flowering, and increased seed dormancy. These sly1 phenotypes are partially rescued by overexpression of the SLY1 homolog SNEEZY (SNE)/SLY2, suggesting that SNE can functionally replace SLY1. GA responses are repressed by DELLA family proteins. GA relieves DELLA repression when the SCF(SLY1) (for Skp1, Cullin, F-box) E3 ubiquitin ligase ubiquitinates DELLA protein, thereby targeting it for proteolysis. Coimmunoprecipitation experiments using constitutively expressed 35S:hemagglutinin (HA)-SLY1 and 35S:HA-SNE translational fusions in the sly1-10 background suggest that SNE can function similarly to SLY1 in GA signaling. Like HA-SLY1, HA-SNE interacted with the CULLIN1 subunit of the SCF complex, and this interaction required the F-box domain. Like HA-SLY1, HA-SNE coimmunoprecipitated with the DELLA REPRESSOR OF GA1-3 (RGA), and this interaction required the SLY1 or SNE carboxyl-terminal domain. Whereas HA-SLY1 overexpression resulted in a decrease in both DELLA RGA and RGA-LIKE2 (RGL2) protein levels, HA-SNE caused a decrease in DELLA RGA but not in RGL2 levels. This suggests that one reason HA-SLY1 is able to effect a stronger rescue of sly1-10 phenotypes than HA-SNE is because SLY1 regulates a broader spectrum of DELLA proteins. The FLAG-SLY1 fusion protein was found to coimmunoprecipitate with the GA receptor HA-GA-INSENSITIVE DWARF1b (GID1b), supporting the model that SLY1 regulates DELLA through interaction with the DELLA-GA-GID1 complex.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号