首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2088篇
  免费   126篇
  2214篇
  2022年   6篇
  2021年   11篇
  2020年   15篇
  2019年   18篇
  2018年   21篇
  2017年   14篇
  2016年   37篇
  2015年   46篇
  2014年   55篇
  2013年   174篇
  2012年   132篇
  2011年   119篇
  2010年   85篇
  2009年   81篇
  2008年   141篇
  2007年   149篇
  2006年   142篇
  2005年   125篇
  2004年   152篇
  2003年   138篇
  2002年   141篇
  2001年   16篇
  2000年   8篇
  1999年   25篇
  1998年   35篇
  1997年   35篇
  1996年   22篇
  1995年   28篇
  1994年   16篇
  1993年   25篇
  1992年   19篇
  1991年   19篇
  1990年   18篇
  1989年   9篇
  1988年   14篇
  1987年   11篇
  1986年   11篇
  1985年   12篇
  1984年   15篇
  1983年   8篇
  1982年   10篇
  1981年   7篇
  1980年   6篇
  1979年   6篇
  1978年   4篇
  1977年   4篇
  1976年   6篇
  1974年   3篇
  1973年   6篇
  1972年   3篇
排序方式: 共有2214条查询结果,搜索用时 0 毫秒
41.
Exercise dramatically increases oxygen consumption and causes oxidative stress. Superoxide dismutase (SOD) is important in the first-line defence mechanisms against oxidative stress. To investigate the effect of acute exercise on the expression of SOD, we examined the expression of mRNA for three SOD isozymes, in mice run on a treadmill to exhaustion. Six hours after exercise, the expression of extracellular SOD (EC-SOD) mRNA increased significantly in skeletal muscle and persisted for 24 h, whereas no change was observed for cytoplasmic and mitochondrial SOD mRNA. Moreover, acute exercise also induced EC-SOD mRNA in the aorta. These results suggest that a single bout of exercise is enough to augment the expression EC-SOD mRNA in skeletal muscle and the aorta, and may partly explain the beneficial effect of exercise.  相似文献   
42.
Role of telomere in endothelial dysfunction in atherosclerosis   总被引:3,自引:0,他引:3  
PURPOSE OF REVIEW: Telomeres consist of repeats of G-rich sequence at the end of chromosomes. These DNA repeats are synthesized by enzymatic activity associated with an RNA protein complex called telomerase. In most somatic cells, telomerase activity is insufficient, and telomere length decreases with increasing cell division, resulting in an irreversible cell growth arrest, termed cellular senescence. Cellular senescence is associated with an array of phenotypic changes suggestive of aging. Until recently, cellular senescence has largely been studied as an in-vitro phenomenon; however, there is accumulating evidence that indicates a critical role of telomere function in the pathogenesis of human atherosclerosis. This review attempts to summarize recent work in vascular biology that supports the "telomere hypothesis". We discuss the possible relevance of telomere function to vascular aging and the therapeutic potential of telomere manipulation. RECENT FINDINGS: It has been reported that many of the changes in senescent vascular cell behavior are consistent with known changes seen in age-related vascular diseases. Introduction of telomere malfunction has been shown to lead to endothelial dysfunction that promotes atherogenesis, whereas telomere lengthening extends cell lifespan and protects against endothelial dysfunction associated with senescence. Indeed, recent studies have demonstrated that telomere attrition and cellular senescence occur in the blood vessels and are associated with human atherosclerosis. SUMMARY: Recent findings suggest that vascular cell senescence induced by telomere shortening may contribute to atherogenesis and may provide insights into a novel treatment of antisenescence to prevent atherosclerosis.  相似文献   
43.
We examined the effect of administering an isoflavone-rich fermented soybean extract (FSBE) on the serum cholesterol concentrations in male rats and in intact and ovariectomized (OVX) female rats. Dietary FSBE decreased the serum cholesterol concentrations in intact female and OVX rats, but did not affect the concentrations in male rats. Dietary FSBE increased the hepatic total and esterified cholesterol contents in the intact female rats, but decreased them in the OVX rats. This hypocholesterolemic effect was not a simple estrogenic effect because it has appeared in some reports that estrogen administration decreased serum cholesterol both male and female rats. Dietary FSBE increased the hepatic low-density lipoprotein receptor (LDLR) gene expression in the intact female rats as has previously been reported from many studies, but did not affect that of the OVX rats. Further investigation is needed into the hypocholesterolemic mechanism of FSBE.  相似文献   
44.
45.
46.
Mutants exhibiting alcohol oxidase (EC 1.1.3.13) activity when grown on glucose in the presence of methanol were found among 2-deoxyglucose-resistant mutants derived from a methanol yeast, Candida boidinii A5. One of these mutants, strain ADU-15, showed the highest alcohol oxidase activity in glucose-containing medium. The growth characteristics and also the induction and degradation of alcohol oxidase were compared with the parent strain and mutant strain ADU-15. In the parent strain, initiation of alcohol oxidase synthesis was delayed by the addition of 0.5% glucose to the methanol medium, whereas it was not delayed in mutant strain ADU-15. This showed that alcohol oxidase underwent repression by glucose. On the other hand, degradation of alcohol oxidase after transfer of the cells from methanol to glucose medium (catabolite inactivation) was observed to proceed at similar rates in parent and mutant strains. The results of immunochemical titration experiments suggest that catabolite inactivation of alcohol oxidase is coupled with a quantitative change in the enzyme. Mutant strain ADU-15 was proved to be a catabolite repression-insensitive mutant and to produce alcohol oxidase in the presence of glucose. However, it was not an overproducer of alcohol oxidase and, in both the parent and mutant strains, alcohol oxidase was completely repressed by ethanol.  相似文献   
47.
To elucidate the role of shear stress in fluid-phase endocytosis of vascular endothelial cells (EC), we used a rotating-disk shearing apparatus to investigate the effects of shear stress on the uptake of lucifer yellow (LY) by cultured bovine aortic endothelial cells (BAEC). Exposure of EC to shear stress (area-mean value of 10 dynes/cm2) caused an increase in LY uptake that was abrogated by the antioxidant, N-acetyl-L-cysteine (NAC), the NADPH oxidase inhibitor, acetovanillone, and two inhibitors of protein kinase C (PKC), calphostin C and GF109203X. These results suggest that fluid-phase endocytosis is regulated by both reactive oxygen species (ROS) and PKC. Shear stress increased both ROS production and PKC activity in EC, and the increase in ROS was unaffected by calphostin C or GF109203X, whereas the activation of PKC was reduced by NAC and acetovanillone. We conclude that shear stress-induced increase in fluid-phase endocytosis is mediated via ROS generation followed by PKC activation in EC.  相似文献   
48.
p66Shc, a longevity adaptor protein, is demonstrated as a key regulator of reactive oxygen species (ROS) metabolism involved in aging and cardiovascular diseases. Vascular endothelial growth factor (VEGF) stimulates endothelial cell (EC) migration and proliferation primarily through the VEGF receptor-2 (VEGFR2). We have shown that ROS derived from Rac1-dependent NADPH oxidase are involved in VEGFR2 autophosphorylation and angiogenic-related responses in ECs. However, a role of p66Shc in VEGF signaling and physiological responses in ECs is unknown. Here we show that VEGF promotes p66Shc phosphorylation at Ser36 through the JNK/ERK or PKC pathway as well as Rac1 binding to a nonphosphorylated form of p66Shc in ECs. Depletion of endogenous p66Shc with short interfering RNA inhibits VEGF-induced Rac1 activity and ROS production. Fractionation of caveolin-enriched lipid raft demonstrates that p66Shc plays a critical role in VEGFR2 phosphorylation in caveolae/lipid rafts as well as downstream p38MAP kinase activation. This in turn stimulates VEGF-induced EC migration, proliferation, and capillary-like tube formation. These studies uncover a novel role of p66Shc as a positive regulator for ROS-dependent VEGFR2 signaling linked to angiogenesis in ECs and suggest p66Shc as a potential therapeutic target for various angiogenesis-dependent diseases.  相似文献   
49.
50.
Aquaporin adipose (AQPap), which we identified from human adipose tissue, is a glycerol channel in adipocyte [Kishida et al. (2000) J. Biol. Chem. 275, 20896-20902]. In the current study, we determined the genomic structure of the human AQPap gene, and identified three AQPap-like genes that resembled (approximately 95%) AQPap, with little expression in human tissues. The AQPap promoter contained a putative peroxisome proliferator response element (PPRE) at -46 to -62, and a putative insulin response element (IRE) at -542/-536. Deletion of the PPRE abolished the pioglitazone-mediated induction of AQPap promoter activity in 3T3-L1 adipocytes. Deletion and single base pair substitution analysis of the IRE abolished the insulin-mediated suppression of the human AQPap gene. Analysis of AQPap sequence in human subjects revealed three missense mutations (R12C, V59L and G264V), and two silent mutations (A103A and G250G). The cRNA injection of the missense mutants into Xenopus oocytes revealed the absence of the activity to transport glycerol and water in the AQPap-G264V protein. In the subject homozygous for AQPap-G264V, exercise-induced increase in plasma glycerol was not observed in spite of the increased plasma noradrenaline. We suggest that AQPap is responsible for the increase of plasma glycerol during exercise in humans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号