首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2307篇
  免费   145篇
  2021年   12篇
  2020年   16篇
  2019年   18篇
  2018年   23篇
  2017年   19篇
  2016年   40篇
  2015年   51篇
  2014年   61篇
  2013年   184篇
  2012年   138篇
  2011年   127篇
  2010年   89篇
  2009年   89篇
  2008年   158篇
  2007年   158篇
  2006年   157篇
  2005年   143篇
  2004年   168篇
  2003年   149篇
  2002年   156篇
  2001年   22篇
  2000年   14篇
  1999年   35篇
  1998年   38篇
  1997年   36篇
  1996年   22篇
  1995年   28篇
  1994年   17篇
  1993年   28篇
  1992年   21篇
  1991年   22篇
  1990年   23篇
  1989年   15篇
  1988年   17篇
  1987年   15篇
  1986年   13篇
  1985年   16篇
  1984年   20篇
  1983年   11篇
  1982年   10篇
  1981年   8篇
  1980年   6篇
  1979年   8篇
  1978年   5篇
  1977年   6篇
  1976年   9篇
  1975年   4篇
  1974年   4篇
  1973年   6篇
  1972年   4篇
排序方式: 共有2452条查询结果,搜索用时 359 毫秒
931.
Amyloid β-precursor protein (APP) is primarily cleaved by α- or β-secretase to generate membrane-bound, C-terminal fragments (CTFs). In turn, CTFs are potentially subject to a second, intramembrane cleavage by γ-secretase, which is active in a lipid raft-like membrane microdomain. Mature APP (N- and O-glycosylated APP), the actual substrate of these secretases, is phosphorylated at the cytoplasmic residue Thr(668) and this phosphorylation changes the overall conformation of the cytoplasmic domain of APP. We found that phosphorylated and nonphosphorylated CTFs exist equally in mouse brain and are kinetically equivalent as substrates for γ-secretase, in vitro. However, in vivo, the level of the phosphorylated APP intracellular domain peptide (pAICD) generated by γ-cleavage of CTFs was very low when compared with the level of nonphosphorylated AICD (nAICD). Phosphorylated CTFs (pCTFs), rather than nonphosphorylated CTFs (nCTFs), were preferentially located outside of detergent-resistant, lipid raft-like membrane microdomains. The APP cytoplasmic domain peptide (APP(648-695)) with Thr(P)(668) did not associate with liposomes composed of membrane lipids from mouse brain to which the nonphosphorylated peptide preferentially bound. In addition, APP lacking the C-terminal 8 amino acids (APP-ΔC8), which are essential for membrane association, decreased Aβ generation in N2a cells. These observations suggest that the pCTFs and CTFΔC8 are relatively movable within the membrane, whereas the nCTFs are susceptible to being anchored into the membrane, an interaction made available as a consequence of not being phosphorylated. By this mechanism, nCTFs can be preferentially captured and cleaved by γ-secretase. Preservation of the phosphorylated state of APP-CTFs may be a potential treatment to lower the generation of Aβ in Alzheimer disease.  相似文献   
932.
Irritable bowel syndrome (IBS) is a gastrointestinal disorder characterized by chronic abdominal pain associated with altered bowel habits. Since the prevalence of IBS is very high and thus, involves elevated health-care costs, treatment of this condition by methods other than prescribed medicines could be beneficial. β-(1,3)-D-glucan with β-(1,6) branches (β-glucan) has been used as a nutritional supplement for many years. In this study, we examined the effect of β-glucan on fecal pellet output and visceral pain response in animal models of IBS. Oral administration of β-glucan suppressed the restraint stress- or drug-induced fecal pellet output. β-Glucan also suppressed the visceral pain response to colorectal distension. These results suggest that β-glucan could be beneficial for the treatment and prevention of IBS.  相似文献   
933.
Synthesis-dependent strand-annealing (SDSA)-mediated homologous recombination replaces the sequence around a DNA double-strand break (DSB) with a copy of a homologous DNA template, while maintaining the original configuration of the flanking regions. In somatic cells at the 4n stage, Holliday-junction-mediated homologous recombination and nonhomologous end joining (NHEJ) cause crossovers (CO) between homologous chromosomes and deletions, respectively, resulting in loss of heterozygosity (LOH) upon cell division. However, the SDSA pathway prevents DSB-induced LOH. We developed a novel yeast DSB-repair assay with two discontinuous templates, set on different chromosomes, to determine the genetic requirements for somatic SDSA and precise end joining. At first we used our in vivo assay to verify that the Srs2 helicase promotes SDSA and prevents imprecise end joining. Genetic analyses indicated that a new DNA/RNA helicase gene, IRC20, is in the SDSA pathway involving SRS2. An irc20 knockout inhibited both SDSA and CO and suppressed the srs2 knockout-induced crossover enhancement, the mre11 knockout-induced inhibition of SDSA, CO, and NHEJ, and the mre11-induced hypersensitivities to DNA scissions. We propose that Irc20 and Mre11 functionally interact in the early steps of DSB repair and that Srs2 acts on the D-loops to lead to SDSA and to prevent crossoverv.  相似文献   
934.
We have previously shown that the dinuclear zinc(II) complex Phos-tag and its derivatives act as phosphate-capture molecules in aqueous solution under conditions of neutral pH. In this study, our aim was to develop more-advanced applications for the detection of phosphopeptides and phosphoproteins by using several newly synthesized Phos-tag derivatives, including a bisbiotinylated Phos-tag (BTL-108), a tetrakisbiotinylated Phos-tag (BTL-109), and a monobiotinylated Phos-tag with a dodeca(ethylene glycol) spacer (BTL-111), as well as the commercially available product BTL-104. Among these complexes, BTL-111 showed the best performance in Western blotting by an ECL system using HRP conjugated streptavidin. In addition, in a quartz-crystal microbalance analysis of a phosphoprotein, the presence of the long hydrophilic dodeca(ethylene glycol) spacer in a novel Phos-tag sensor chip coated with BTL-111 resulted in a greater sensitivity than was achieved with a similar chip coated with BTL-104. Moreover, a peptide microarray technique using the ECL system and BTL-111 permitted high-throughput assays for the specific and highly sensitive detection of protein kinase activities in cell lysates.  相似文献   
935.
Hyperphosphorylation of the microtubule binding protein Tau is a feature of a number of neurodegenerative diseases, including Alzheimer's disease. Tau is hyperphosphorylated in the hippocampus of dab1-null mice in a strain-dependent manner; however, it has not been clear if the Tau phosphorylation phenotype is a secondary effect of the morbidity of these mutants. The dab1 gene encodes a docking protein that is required for normal brain lamination and dendritogenesis as part of the Reelin signaling pathway. We show that dab1 gene inactivation after brain development leads to Tau hyperphosphorylation in anatomically normal mice. Genomic regions that regulate the phospho Tau phenotype in dab1 mutants have previously been identified. Using a microarray gene expression comparison between dab1-mutants from the high-phospho Tau expressing and low-phospho Tau expressing strains, we identified Stk25 as a differentially expressed modifier of dab1-mutant phenotypes. Stk25 knockdown reduces Tau phosphorylation in embryonic neurons. Furthermore, Stk25 regulates neuronal polarization and Golgi morphology in an antagonistic manner to Dab1. This work provides insights into the complex regulation of neuronal behavior during brain development and provides insights into the molecular cascades that regulate Tau phosphorylation.  相似文献   
936.
Squalene synthase (E.C. 2.5.1.21) is a microsomal enzyme which catalyzes the reductive dimerization of two molecules of farnesyl diphosphate to form squalene, and is involved in the first committed step in cholesterol biosynthesis. It is an attractive target for hypocholesterolemic and hypotriglyceridemic strategies. We synthesized a series of 3-ethylidenequinuclidine derivatives, and evaluated their ability to inhibit squalene synthase in vitro and to lower non-HDL cholesterol levels in hamsters. 3-Ethylidenequinuclidine derivatives incorporating an unsubstituted 9H-carbazole moiety reduced plasma non-HDL cholesterol levels and did not affect plasma transaminase levels, indicating a lack of hepatotoxicity. Among the novel compounds, (Z)-2-[2-(quinuclidin-3-ylidene)ethoxy]-9H-carbazole hydrochloride 8 (YM-53579) and (E)-2-[2-fluoro-2-(quinuclidin-3-ylidene)ethoxy]-9H-carbazole hydrochloride 28 (YM-53601) were potent inhibitors of squalene synthase derived from human hepatoma cells, with IC(50) values of 160 and 79 nM, respectively. They also reduced plasma non-HDL cholesterol levels in hamsters by approximately 50 and 70%, respectively, at an oral dose of 50 mg/kg/day for 5 days.  相似文献   
937.
The amount and genetic composition of pollen grains that are transported to flowers influence the reproduction and fitness of plants. Despite the importance of insect-pollination systems, an understanding of those systems is still lacking due to the absence of a genetic analysis of pollen grains that are transported to flowers. We evaluated the pollination efficiencies of bumblebees (Apidae, Bombus spp.), flower beetles (Scarabaeidae, subfamily Cetoniinae, Protaetia and Eucetonia sp.), and small beetles (Lagriidae, Arthromacra sp.) that visited the flowers of Magnolia obovata (Magnoliaceae) using quantitative (flower visitation frequency, amount of adherent pollen per insect) and qualitative (origin and genetic diversity of adherent pollen per insect) criteria. Most of the pollen adhering to bumblebees and small beetles was self-pollen. This result suggests that visitation by these insects may cause geitonogamous pollen flow and negatively affect the reproduction of M. obovata, causing inbreeding depression. In contrast, flower beetles transported large amounts of genetically diverse outcross pollen. Our results suggest that certain beetle species contribute quantitatively and qualitatively to the pollination of M. obovata. Direct genetic analysis of pollen grains will advance our understanding of plant mating systems and may shed light on the mutualism and coevolution of plants and flower visitors.  相似文献   
938.
Sperm chemotaxis toward an egg is observed in many animals, and the control of sperm-attracting activity is thought to play an important role in ensuring fertilization. However, the mechanism underlying the release of a sperm attractant from an egg is still obscure. In this study, we examined the systems involved in the release of sperm-activating and sperm-attracting factor (SAAF), which is the sperm attractant of the ascidian Ciona intestinalis. Here, we show that the egg acquires sperm-attracting activity after germinal vesicle breakdown. Further, since the cytoplasmic extracts of immature oocytes exhibit no sperm-attracting activity, the SAAF in oocytes may be activated after germinal vesicle breakdown. We found 13 SAAF-binding proteins in an egg plasma membrane extract and identified five proteins by proteomic analysis: valosin-containing protein (VCP)/p97, proteasome alpha 2 subunit, MGC97756 protein, proteasome subunit Y, and beta-tubulin. In particular, the interaction between VCP/p97 and SAAF was confirmed by a pull-down assay. VCP/p97 is initially localized in the germinal vesicle, and during oocyte maturation, it shifts to the endoplasmic reticulum in the cortical regions. Thus, VCP/p97 is a potential modulator of SAAF release from the egg.  相似文献   
939.
3,4-methylenedioxymethamphetamine (MDMA) is an illegal amphetamine-type stimulant (ATS) that is abused orally in the form of tablets for recreational purposes. The aim of this work is to investigate the absorption mechanism of MDMA and other related compounds that often occur together in ATS tablets, and to determine whether such tablet components interact with each other in intestinal absorption. The characteristics of MDMA uptake by the human intestinal epithelial Caco-2 cell line were investigated. The Michaelis constant and the maximal uptake velocity at pH 6.0 were 1.11 mM and 13.79 nmol/min/mg protein, respectively, and the transport was electroneutral. The initial uptake rate was regulated by both intra- and extracellular pH. MDMA permeation from the apical to the basolateral side was inferior to that in the reverse direction, and a decrease in apical pH enhanced MDMA permeation from the basolateral to the apical side. These facts indicate that this transport system may be an antiporter of H+. However, under physiological conditions, the proton gradient cannot drive the MDMA uptake because it is inwardly directed. Large concentration differences of MDMA itself drive this antiporter. Various compounds with similar amine moieties inhibited the uptake, but substrates of organic cation transporters (OCT1-3) and an H+-coupled efflux antiporter, MATE, were not recognized.  相似文献   
940.
Amphidinols (AMs) are a group of dinoflagellate metabolites with potent antifungal activity. As is the case with polyene macrolide antibiotics, the mode of action of AMs is accounted for by direct interaction with lipid bilayers, which leads to formation of pores or lesions in biomembranes. However, it was revealed that AMs induce hemolysis with significantly lower concentrations than those necessary to permeabilize artificial liposomes, suggesting that a certain factor(s) in erythrocyte membrane potentiates AM activity. Glycophorin A (GpA), a major erythrocyte protein, was chosen as a model protein to investigate interaction between peptides and AMs such as AM2, AM3 and AM6 by using SDS-PAGE, surface plasmon resonance, and fluorescent-dye leakages from GpA-reconstituted liposomes. The results unambiguously demonstrated that AMs have an affinity to the transmembrane domain of GpA, and their membrane-permeabilizing activity is significantly potentiated by GpA. Surface plasmon resonance experiments revealed that their interaction has a dissociation constant of the order of 10 microM, which is significantly larger than efficacious concentrations of hemolysis by AMs. These results imply that the potentiation action by GpA or membrane integral peptides may be due to a higher affinity of AMs to protein-containing membranes than that to pure lipid bilayers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号