首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5585篇
  免费   567篇
  国内免费   2篇
  6154篇
  2023年   20篇
  2022年   46篇
  2021年   99篇
  2020年   58篇
  2019年   92篇
  2018年   86篇
  2017年   77篇
  2016年   161篇
  2015年   241篇
  2014年   250篇
  2013年   293篇
  2012年   427篇
  2011年   398篇
  2010年   242篇
  2009年   238篇
  2008年   359篇
  2007年   353篇
  2006年   306篇
  2005年   290篇
  2004年   297篇
  2003年   260篇
  2002年   233篇
  2001年   87篇
  2000年   88篇
  1999年   78篇
  1998年   63篇
  1997年   58篇
  1996年   38篇
  1995年   48篇
  1994年   40篇
  1993年   40篇
  1992年   43篇
  1991年   57篇
  1990年   41篇
  1989年   33篇
  1988年   29篇
  1987年   19篇
  1986年   33篇
  1985年   39篇
  1984年   23篇
  1983年   23篇
  1982年   22篇
  1981年   24篇
  1979年   48篇
  1978年   27篇
  1977年   21篇
  1976年   19篇
  1975年   22篇
  1972年   24篇
  1968年   25篇
排序方式: 共有6154条查询结果,搜索用时 12 毫秒
81.
Sleep disturbances in alcohol-dependent (AD) individuals may persist despite abstinence from alcohol and can influence the course of the disorder. Although the mechanisms of sleep disturbances of AD are not well understood and some evidence suggests dysregulation of circadian rhythms, dim light melatonin onset (DLMO) has not previously been assessed in AD versus healthy control (HC) individuals in a sample that varied by sex and race. The authors assessed 52 AD participants (mean?±?SD age: 36.0?±?11.0 yrs of age, 10 women) who were 3-12 wks since their last drink (abstinence: 57.9?±?19.3 d) and 19 age- and sex-matched HCs (34.4?±?10.6 yrs, 5 women). Following a 23:00-06:00?h at-home sleep schedule for at least 5 d and screening/baseline nights in the sleep laboratory, participants underwent a 3-h extension of wakefulness (02:00?h bedtime) during which salivary melatonin samples were collected every 30?min beginning at 19:30?h. The time of DLMO was the primary measure of circadian physiology and was assessed with two commonly used methodologies. There was a slower rate of rise and lower maximal amplitude of the melatonin rhythm in the AD group. DLMO varied by the method used to derive it. Using 3 pg/mL as threshold, no significant differences were found between the AD and HC groups. Using 2 standard deviations above the mean of the first three samples, the DLMO in AD occurred significantly later, 21:02?±?00:41?h, than in HC, 20:44?±?00:21?h (t?=?-2.4, p?=?.02). Although melatonin in the AD group appears to have a slower rate of rise, using well-established criteria to assess the salivary DLMO did not reveal differences between AD and HC participants. Only when capturing melatonin when it is already rising was DLMO found to be significantly delayed by a mean 18?min in AD participants. Future circadian analyses on alcoholics should account for these methodological caveats.  相似文献   
82.
Most signal transduction pathways in humans are regulated by protein kinases through phosphorylation of their protein substrates. Typical eukaryotic protein kinases are of two major types: those that phosphorylate‐specific sequences containing tyrosine (~90 kinases) and those that phosphorylate either serine or threonine (~395 kinases). The highly conserved catalytic domain of protein kinases comprises a smaller N lobe and a larger C lobe separated by a cleft region lined by the activation loop. Prior studies find that protein tyrosine kinases recognize peptide substrates by binding the polypeptide chain along the C‐lobe on one side of the activation loop, while serine/threonine kinases bind their substrates in the cleft and on the side of the activation loop opposite to that of the tyrosine kinases. Substrate binding structural studies have been limited to four families of the tyrosine kinase group, and did not include Src tyrosine kinases. We examined peptide‐substrate binding to Src using paramagnetic‐relaxation‐enhancement NMR combined with molecular dynamics simulations. The results suggest Src tyrosine kinase can bind substrate positioning residues C‐terminal to the phosphoacceptor residue in an orientation similar to serine/threonine kinases, and unlike other tyrosine kinases. Mutagenesis corroborates this new perspective on tyrosine kinase substrate recognition. Rather than an evolutionary split between tyrosine and serine/threonine kinases, a change in substrate recognition may have occurred within the TK group of the human kinome. Protein tyrosine kinases have long been therapeutic targets, but many marketed drugs have deleterious off‐target effects. More accurate knowledge of substrate interactions of tyrosine kinases has the potential for improving drug selectivity.  相似文献   
83.
All-trans retinoic acid (ATRA) is a differentiation agent that revolutionized the treatment of acute promyelocytic leukemia. However, it has not been useful for other types of acute myeloid leukemia (AML). Here we explored the effect of SALL4, a stem cell factor, on ATRA-induced AML differentiation in both ATRA-sensitive and ATRA-resistant AML cells. Aberrant SALL4 expression has been found in nearly all human AML cases, whereas, in normal bone marrow and peripheral blood cells, its expression is only restricted to hematopoietic stem/progenitor cells. We reason that, in AMLs, SALL4 activation may prevent cell differentiation and/or protect self-renewal that is seen in normal hematopoietic stem/progenitor cells. Indeed, our studies show that ATRA-mediated myeloid differentiation can be largely blocked by exogenous expression of SALL4, whereas ATRA plus SALL4 knockdown causes significantly increased AML differentiation and cell death. Mechanistic studies indicate that SALL4 directly associates with retinoic acid receptor α and modulates ATRA target gene expression. SALL4 is shown to recruit lysine-specific histone demethylase 1 (LSD1) to target genes and alter the histone methylation status. Furthermore, coinhibition of LSD1 and SALL4 plus ATRA treatment exhibited the strongest anti-AML effect. These findings suggest that SALL4 plays an unfavorable role in ATRA-based regimes, highlighting an important aspect of leukemia therapy.  相似文献   
84.
DNA fragments capable of conferring autonomous replicating ability to plasmids inSaccharomyces cerevisiae were isolated from four different plant genomes and from the Ti plasmid ofAgrobacterium tumefaciens. The DNA structure of these autonomously replicating sequences (ARSs) as well as two from yeast were studied using retardation during polyacrylamide gel electrophoresis and computer analysis as measures of sequence-dependent DNA structures. Bent DNA was found to be associated with the ARS elements. An 11 bp ARS consensus sequence required for ARS function was also identified in the elements examined and was flanked by unusually straight structures which were rich in A+T content. These results show that the ARS elements from genomes of higher plants have structural and sequence features in common with ARS elements from yeast and higher animals.Supported by Grant 1RO1-GM41708-O1 from the National Institute of Health.  相似文献   
85.
Biochemical functionalization of surfaces is an increasingly utilized mechanism to promote or inhibit adhesion of cells. To promote mammalian cell adhesion, one common functionalization approach is surface conjugation of adhesion peptide sequences such as Arg-Gly-Asp (RGD), a ligand of transmembrane integrin molecules. It is generally assumed that such functionalization does not alter the local mechanical properties of the functionalized surface, as is important to interpretations of macromolecular mechanotransduction in cells. Here, we examine this assumption systematically, through nanomechanical measurement of the nominal elastic modulus of polymer multilayer films of nanoscale thickness, functionalized with RGD through different processing routes. We find that the method of biochemical functionalization can significantly alter mechanical compliance of polymeric substrata such as weak polyelectrolyte multilayers (PEMs), increasingly utilized materials for such studies. In particular, immersed adsorption of intermediate functionalization reagents significantly decreases compliance of the PEMs considered herein, whereas polymer-on-polymer stamping of these same reagents does not alter compliance of weak PEMs. This finding points to the potential unintended alteration of mechanical properties via surface functionalization and also suggests functionalization methods by which chemical and mechanical properties of cell substrata can be controlled independently.  相似文献   
86.
The explosion in gene sequence data and technological breakthroughs in protein structure determination inspired the launch of structural genomics (SG) initiatives. An often stated goal of structural genomics is the high-throughput structural characterisation of all protein sequence families, with the long-term hope of significantly impacting on the life sciences, biotechnology and drug discovery. Here, we present a comprehensive analysis of solved SG targets to assess progress of these initiatives. Eleven consortia have contributed 316 non-redundant entries and 323 protein chains to the Protein Data Bank (PDB), and 459 and 393 domains to the CATH and SCOP structure classifications, respectively. The quality and size of these proteins are comparable to those solved in traditional structural biology and, despite huge scope for duplicated efforts, only 14% of targets have a close homologue (>/=30% sequence identity) solved by another consortium. Analysis of CATH and SCOP revealed the significant contribution that structural genomics is making to the coverage of superfamilies and folds. A total of 67% of SG domains in CATH are unique, lacking an already characterised close homologue in the PDB, whereas only 21% of non-SG domains are unique. For 29% of domains, structure determination revealed a remote evolutionary relationship not apparent from sequence, and 19% and 11% contributed new superfamilies and folds. The secondary structure class, fold and superfamily distributions of this dataset reflect those of the genomes. The domains fall into 172 different folds and 259 superfamilies in CATH but the distribution is highly skewed. The most populous of these are those that recur most frequently in the genomes. Whilst 11% of superfamilies are bacteria-specific, most are common to all three superkingdoms of life and together the 316 PDB entries have provided new and reliable homology models for 9287 non-redundant gene sequences in 206 completely sequenced genomes. From the perspective of this analysis, it appears that structural genomics is on track to be a success, and it is hoped that this work will inform future directions of the field.  相似文献   
87.
Epigenetic control of gene expression is a major determinant of tumor phenotype and has been found to influence sensitivity to individual chemotherapeutic agents. Glutathione peroxidase 3 (GPX3, plasma glutathione peroxidase) is a key component of cellular antioxidant regulation and its gene has been reported to be methylated in specific tumor types. GPX3 role in oxidative damage has been associated with sensitivity to platinums in other tumors but its importance in colorectal cancer (CRC) has not been determined. We examined the role of GPX3 methylation in colorectal carcinoma in determining sensitivity to platinum drugs using primary tumor specimens, cell lines, knockdown cell lines, and tumor cell line xenografts. We find GPX3 promoter region methylation in approximately one third of CRC samples and GPX3 methylation leads to reduced GPX3 expression and increased oxaliplatin and cisplatin sensitivity. In contrast, in cell lines with high baseline levels of GPX3 expression or with the ability to increase GPX3 expression, platinum resistance is increased. The cisplatin IC50 in GPX3-methylated cell lines is approximately 6-fold lower than that in GPX3-unmethylated lines. Additionally, knockdown cell lines with essentially no GPX3 expression require N-acetylcysteine to survive in culture underscoring the importance of GPX3 in redox biology. In vivo, GPX3 methylation predicts tumor xenograft sensitivity to platinum with regression of GPX3 knockdown xenografts with platinum treatment but continued growth of GPX3 wild type xenografts in the presence of platinum. These studies demonstrate the importance of GPX3 for CRC cells resistance to platinums and the potential utility of GPX3 methylation status as a predictive biomarker for platinum sensitivity in CRC.  相似文献   
88.
Lactic acid bacteria (LAB) have been used in fermentation processes for centuries. More recent applications including the use of LAB as probiotics have significantly increased industrial interest. Here we present a comparative genomic analysis of four completely sequenced Lactobacillus strains, isolated from the human gastrointestinal tract, versus 25 lactic acid bacterial genomes present in the public database at the time of analysis. Lactobacillus acidophilus NCFM, Lactobacillus johnsonii NCC533, Lactobacillus gasseri ATCC33323, and Lactobacillus plantarum WCFS1are all considered probiotic and widely used in industrial applications. Using Differential Blast Analysis (DBA), each genome was compared to the respective remaining three other Lactobacillus and 25 other LAB genomes. DBA highlighted strain-specific genes that were not represented in any other LAB used in this analysis and also identified group-specific genes shared within lactobacilli. Initial comparative analyses highlighted a significant number of genes involved in cell adhesion, stress responses, DNA repair and modification, and metabolic capabilities. Furthermore, the range of the recently identified potential autonomous units (PAUs) was broadened significantly, indicating the possibility of distinct families within this genetic element. Based on in silico results obtained for the model organism L. acidophilus NCFM, DBA proved to be a valuable tool to identify new key genetic regions for functional genomics and also suggested re-classification of previously annotated genes.  相似文献   
89.
Non-invasive wildlife research using DNA from feces has become increasingly popular. Recent studies have attempted to solve problems associated with recovering DNA from feces by investigating the influence of factors such as season, diet, collection method, preservation method, extraction protocol, and time. To our knowledge, studies of this nature have not addressed DNA degradation over time in wet environments, and have not been performed on fecal pellets of ungulates. Therefore, our objective was to determine the length of time a fecal pellet from a Sitka black-tailed deer (Odocoileus hemionus sitkensis) could remain in the field in a temperate rainforest environment before the DNA became too degraded for individual identification. Pellets were extracted from the rectum of recently killed deer and placed in an environment protected from rainfall and in an environment exposed to rainfall. Pellets from each treatment group were sampled at intervals of 2, 7, 14, 21, and 28 days after deer harvest. DNA was extracted from sampled pellets and individual samples were genotyped using microsatellite markers. Amplification failure and errors (dropout and false alleles) were recorded to determine extent of DNA degradation. Eighty percent of samples in the protected environment and 22% of samples in the exposed environment were successfully genotyped during the 28-day experiment. With no samples being successfully genotyped in the exposed environment after 7 days, our study showed that rainfall significantly increases degradation rates of DNA from ungulate pellets.  相似文献   
90.
Autism spectrum disorders (ASD) and schizophrenia are neurodevelopmental disorders for which recent evidence indicates an important etiologic role for rare copy number variants (CNVs) and suggests common genetic mechanisms. We performed cytogenomic array analysis in a discovery sample of patients with neurodevelopmental disorders referred for clinical testing. We detected a recurrent 1.4 Mb deletion at 17q12, which harbors HNF1B, the gene responsible for renal cysts and diabetes syndrome (RCAD), in 18/15,749 patients, including several with ASD, but 0/4,519 controls. We identified additional shared phenotypic features among nine patients available for clinical assessment, including macrocephaly, characteristic facial features, renal anomalies, and neurocognitive impairments. In a large follow-up sample, the same deletion was identified in 2/1,182 ASD/neurocognitive impairment and in 4/6,340 schizophrenia patients, but in 0/47,929 controls (corrected p = 7.37 × 10−5). These data demonstrate that deletion 17q12 is a recurrent, pathogenic CNV that confers a very high risk for ASD and schizophrenia and show that one or more of the 15 genes in the deleted interval is dosage sensitive and essential for normal brain development and function. In addition, the phenotypic features of patients with this CNV are consistent with a contiguous gene syndrome that extends beyond RCAD, which is caused by HNF1B mutations only.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号