首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5328篇
  免费   510篇
  国内免费   2篇
  5840篇
  2023年   20篇
  2022年   44篇
  2021年   92篇
  2020年   58篇
  2019年   91篇
  2018年   80篇
  2017年   76篇
  2016年   152篇
  2015年   225篇
  2014年   243篇
  2013年   288篇
  2012年   410篇
  2011年   390篇
  2010年   242篇
  2009年   229篇
  2008年   348篇
  2007年   347篇
  2006年   297篇
  2005年   281篇
  2004年   283篇
  2003年   244篇
  2002年   220篇
  2001年   79篇
  2000年   83篇
  1999年   67篇
  1998年   59篇
  1997年   56篇
  1996年   34篇
  1995年   43篇
  1994年   40篇
  1993年   37篇
  1992年   34篇
  1991年   46篇
  1990年   39篇
  1989年   27篇
  1988年   25篇
  1987年   18篇
  1986年   27篇
  1985年   34篇
  1984年   21篇
  1983年   23篇
  1982年   19篇
  1981年   23篇
  1979年   39篇
  1978年   21篇
  1977年   17篇
  1975年   17篇
  1972年   22篇
  1970年   16篇
  1968年   20篇
排序方式: 共有5840条查询结果,搜索用时 0 毫秒
61.
Out of 20 patients with viral hepatitis whose glucose-6-phosphate dehydrogenase (G-6-PD) levels were normal, 14 had clinical evidence of a mild to moderate degree of haemolysis but in all the patients studied the half life of chromium-51-labelled red cells was shortened. Out of 18 viral hepatitis patients deficient in G-6-PD 17 had clinical evidence of haemolysis, and in eight this was more severe than in the group with normal G-6-PD values. Massive intravascular haemolysis occurred in four, three of whom died. The massive haemolysis was attributed to the presence of additional drug-induced oxidative stress to the G-6-PD-deficient red cells.  相似文献   
62.
Insulin resistance, hyperglycemia, and type 2 diabetes are among the sequelae of metabolic syndromes that occur in 60-80% of human immunodeficiency virus (HIV)-positive patients treated with HIV-protease inhibitors (PIs). Studies to elucidate the molecular mechanism(s) contributing to these changes, however, have mainly focused on acute, in vitro actions of PIs. Here, we examined the chronic (7 wk) in vivo effects of the PI indinavir (IDV) in male Zucker diabetic fatty (fa/fa) (ZDF) rats. IDV exposure accelerated the diabetic state and dramatically exacerbated hyperglycemia and oral glucose intolerance in the ZDF rats, compared with vehicle-treated ZDF rats. Oligonucleotide gene array analyses revealed upregulation of suppressor of cytokine signaling-1 (SOCS-1) expression in insulin-sensitive tissues of IDV rats. SOCS-1 is a known inducer of insulin resistance and diabetes, and immunoblotting analyses revealed increases in SOCS-1 protein expression in adipose, skeletal muscle, and liver tissues of IDV-administered ZDF rats. This was associated with increases in the upstream regulator TNF-alpha and downstream effector sterol regulatory element-binding protein-1 and a decrease in IRS-2. IDV and other PIs currently in clinical use induced the SOCS-1 signaling cascade also in L6 myotubes and 3T3-L1 adipocytes exposed acutely to PIs under normal culturing conditions and in tissues from Zucker wild-type lean control rats administered PIs for 3 wk, suggesting an effect of these drugs even in the absence of background hyperglycemia/hyperlipidemia. Our findings therefore indicate that induction of the SOCS-1 signaling cascade by PIs could be an important contributing factor in the development of metabolic dysregulation associated with long-term exposures to HIV-PIs.  相似文献   
63.
Higher plant cellulose synthases   总被引:8,自引:0,他引:8  
Richmond T 《Genome biology》2000,1(4):reviews3001.1-reviews30016
Cellulose, an aggregate of unbranched polymers of β-1,4-linked glucose residues, is the major component of wood and thus paper, and is synthesized by plants, most algae, some bacteria and fungi, and even some animals. The genes that synthesize cellulose in higher plants differ greatly from the well-characterized genes found in Acetobacter and Agrobacterium sp. More correctly designated as 'cellulose synthase catalytic subunits', plant cellulose synthase (CesA) proteins are integral membrane proteins, approximately 1,000 amino acids in length. The sequences for more than 20 full-length CesA genes are available, and they show high similarity to one another across the entire length of the encoded protein, except for two small regions of variability. There are a number of highly conserved residues, including several motifs shown to be necessary for processive glycosyltransferase activity. No crystal structure is known for cellulose synthase proteins, and the exact enzymatic mechanism is unknown. There are a number of mutations in cellulose synthase genes in the model organism Arabidopsis thaliana. Some of these mutants show altered morphology due to the lack of a properly developed primary or secondary cell wall. Others show resistance to well-characterized cellulose biosynthesis inhibitors.  相似文献   
64.
Zucchini yellow mosaic virus (ZYMV) is one of the most economically important potyviruses infecting cucurbit crops worldwide. Using a candidate gene approach, we cloned and sequenced eIF4E and eIF(iso)4E gene segments in watermelon. Analysis of the nucleotide sequences between the ZYMV-resistant watermelon plant introduction PI 595203 (Citrullus lanatus var. lanatus) and the ZYMV-susceptible watermelon cultivar ‘New Hampshire Midget’ (‘NHM’) showed the presence of single nucleotide polymorphisms (SNPs). Initial analysis of the identified SNPs in association studies indicated that SNPs in the eIF4E, but not eIF(iso)4E, were closely associated to the phenotype of ZYMV-resistance in 70 F2 and 114 BC1R progenies. Subsequently, we focused our efforts in obtaining the entire genomic sequence of watermelon eIF4E. Three SNPs were identified between PI 595203 and NHM. One of the SNPs (A241C) was in exon 1 and the other two SNPs (C309A and T554G) were in the first intron of the gene. SNP241 which resulted in an amino acid substitution (proline to threonine) was shown to be located in the critical cap recognition and binding area, similar to that of several plant species resistance to potyviruses. Analysis of a cleaved amplified polymorphism sequence (CAPS) marker derived from this SNP in F2 and BC1R populations demonstrated a cosegregation between the CAPS-2 marker and their ZYMV resistance or susceptibility phenotype. When we investigated whether such SNP mutation in the eIF4E was also conserved in several other PIs of C. lanatus var. citroides, we identified a different SNP (A171G) resulting in another amino acid substitution (D71G) from four ZYMV-resistant C. lanatus var. citroides (PI 244018, PI 482261, PI 482299, and PI 482322). Additional CAPS markers were also identified. Availability of all these CAPS markers will enable marker-aided breeding of watermelon for ZYMV resistance.  相似文献   
65.
Atmospheric deposition contributes a large fraction of the annual nitrogen (N) input to the basin of the Susquehanna River, a river that provides two-thirds of the annual N load to the Chesapeake Bay. Yet, there are few measurements of the retention of atmospheric N in the Upper Susquehanna’s forested headwaters. We characterized the amount, form (nitrate, ammonium, and dissolved organic nitrogen), isotopic composition (δ15N- and δ18O-nitrate), and seasonality of stream N over 2 years for 7–13 catchments. We expected high rates of N retention and seasonal nitrate patterns typical of other seasonally snow-covered catchments: dormant season maxima and growing season minima. Coarse estimates of N export indicated high rates of inorganic N retention (>95%), yet streams had unexpected seasonal nitrate patterns, with summer peaks (14–96 μmol L−1), October crashes (<1 μmol L−1), and modest rebounds during the dormant season (<1–20 μmol L−1). Stream δ18O-nitrate values indicated microbial nitrification as the primary source of stream nitrate, although snowmelt or other atmospheric source contributed up to 47% of stream nitrate in some March samples. The autumn nitrate crash coincided with leaffall, likely due to in-stream heterotrophic uptake of N. Hypothesized sources of the summer nitrate peaks include: delayed release of nitrate previously flushed to groundwater, weathering of geologic N, and summer increases in net nitrate production. Measurements of shale δ15N and soil-, well-, and streamwater nitrate within one catchment point toward a summer increase in soil net nitrification as the driver of this pattern. Rather than seasonal plant demand, processes governing the seasonal production, retention, and transport of nitrate in soils may drive nitrate seasonality in this and many other systems.  相似文献   
66.
The human major histocompatibility complex (MHC) is contained within about 4 Mb on the short arm of chromosome 6 and is recognised as the most variable region in the human genome. The primary aim of the MHC Haplotype Project was to provide a comprehensively annotated reference sequence of a single, human leukocyte antigen-homozygous MHC haplotype and to use it as a basis against which variations could be assessed from seven other similarly homozygous cell lines, representative of the most common MHC haplotypes in the European population. Comparison of the haplotype sequences, including four haplotypes not previously analysed, resulted in the identification of >44,000 variations, both substitutions and indels (insertions and deletions), which have been submitted to the dbSNP database. The gene annotation uncovered haplotype-specific differences and confirmed the presence of more than 300 loci, including over 160 protein-coding genes. Combined analysis of the variation and annotation datasets revealed 122 gene loci with coding substitutions of which 97 were non-synonymous. The haplotype (A3-B7-DR15; PGF cell line) designated as the new MHC reference sequence, has been incorporated into the human genome assembly (NCBI35 and subsequent builds), and constitutes the largest single-haplotype sequence of the human genome to date. The extensive variation and annotation data derived from the analysis of seven further haplotypes have been made publicly available and provide a framework and resource for future association studies of all MHC-associated diseases and transplant medicine. Horton and Gibson contributed equally to this work.  相似文献   
67.
Cercopithecoid monkeys are unique among primates in that all species (except macaques) lack a maxillary sinus, an unusual condition among eutherian mammals. Although this uncommon distribution of cranial pneumatization was noted previously, the phylogenetic ramifications have not been investigated fully. Recently, character state optimization analysis of computed tomography (CT) data from extant Old World monkeys suggested that the loss of the sinus may have occurred at the origin of the group, unlike previous hypotheses positing only a reduction in size of the structure. To critically evaluate the "early loss" hypothesis, a recently recovered complete cranium of Victoriapithecus macinnesi from Maboko Island, Kenya, was examined by CT to determine the extent of its cranial pneumatization. This taxon is crucial for evaluating character state evolution in Old World monkeys, due to its phylogenetic position, preceding the cercopithecine/colobine split. CT analysis reveals only cancellous bone lateral of the nasal cavity, indicating that Victoriapithecus does not possess a maxillary sinus. Phylogenetic evaluation of the fossil with extant catarrhine taxa strongly supports the early loss of the sinus in cercopithecoids. The results suggest that the maxillary sinus found in the genus Macaca is not homologous with that of other eutherians, which may provide insights into the origin and function (if any) of the paranasal pneumatizations.  相似文献   
68.
MOTIVATION: Theoretical models of biological networks are valuable tools in evolutionary inference. Theoretical models based on gene duplication and divergence provide biologically plausible evolutionary mechanics. Similarities found between empirical networks and their theoretically generated counterpart are considered evidence of the role modeled mechanics play in biological evolution. However, the method by which these models are parameterized can lead to questions about the validity of the inferences. Selecting parameter values in order to produce a particular topological value obfuscates the possibility that the model may produce a similar topology for a large range of parameter values. Alternately, a model may produce a large range of topologies, allowing (incorrect) parameter values to produce a valid topology from an otherwise flawed model. In order to lend biological credence to the modeled evolutionary mechanics, parameter values should be derived from the empirical data. Furthermore, recent work indicates that the timing and fate of gene duplications are critical to proper derivation of these parameters. RESULTS: We present a methodology for deriving evolutionary rates from empirical data that is used to parameterize duplication and divergence models of protein interaction network evolution. Our method avoids shortcomings of previous methods, which failed to consider the effect of subsequent duplications. From our parameter values, we find that concurrent and existing existing duplication and divergence models are insufficient for modeling protein interaction network evolution. We introduce a model enhancement based on heritable interaction sites on the surface of a protein and find that it more closely reflects the high clustering found in the empirical network.  相似文献   
69.
Although it has been established that cellular stiffness can change as a stem cell differentiates, the precise relationship between cell mechanics and other phenotypic properties remains unclear. Inherent cell heterogeneity and asynchronous differentiation complicate population analysis; therefore, single-cell analysis was employed to determine how changes in cell stiffness correlate with changes in molecular biomarkers during differentiation. Design of a custom gridded tissue culture dish facilitated single-cell comparisons between cell mechanics and other differentiation biomarkers by enabling sequential measurement of cell mechanics and protein biomarker expression at the single cell level. The Young’s modulus of mesenchymal stem cells was shown not only to decrease during chemically-induced osteoblast differentiation, but also to correlate more closely with the day of differentiation than did the relative expression of the traditional osteoblast differentiation markers, bone sialoprotein and osteocalcin. Therefore, cell stiffness, a measurable property of individual cells, may serve as an improved indicator of single-cell osteoblast differentiation compared to traditional biological markers. Revelation of additional osteoblast differentiation indicators, such as cell stiffness, can improve identification and collection of starting cell populations, with applications to mesenchymal stem cell therapies and stem cell-based tissue engineering.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号