首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   341篇
  免费   33篇
  2020年   3篇
  2019年   3篇
  2018年   8篇
  2016年   6篇
  2015年   7篇
  2014年   10篇
  2013年   14篇
  2012年   26篇
  2011年   19篇
  2010年   12篇
  2009年   11篇
  2008年   24篇
  2007年   15篇
  2006年   22篇
  2005年   12篇
  2004年   14篇
  2003年   12篇
  2002年   15篇
  2001年   4篇
  2000年   5篇
  1999年   8篇
  1998年   6篇
  1997年   4篇
  1996年   4篇
  1995年   7篇
  1994年   3篇
  1993年   6篇
  1992年   11篇
  1991年   4篇
  1990年   4篇
  1989年   6篇
  1988年   7篇
  1987年   6篇
  1986年   5篇
  1985年   7篇
  1984年   4篇
  1983年   3篇
  1981年   3篇
  1980年   5篇
  1978年   2篇
  1977年   2篇
  1971年   5篇
  1969年   1篇
  1967年   1篇
  1966年   2篇
  1954年   1篇
  1952年   1篇
  1951年   1篇
  1950年   3篇
  1935年   2篇
排序方式: 共有374条查询结果,搜索用时 15 毫秒
51.
Aggrecanases are now believed to be the principal proteinases responsible for aggrecan degradation in osteoarthritis. Given their potential as a drug target, we solved crystal structures of the two most active human aggrecanase isoforms, ADAMTS4 and ADAMTS5, each in complex with bound inhibitor and one wherein the enzyme is in apo form. These structures show that the unliganded and inhibitor-bound enzymes exhibit two essentially different catalytic-site configurations: an autoinhibited, nonbinding, closed form and an open, binding form. On this basis, we propose that mature aggrecanases exist as an ensemble of at least two isomers, only one of which is proteolytically active.  相似文献   
52.
Aim  To analyse phylogeographic patterns in the four species of Hypochaeris sect. Hypochaeris , evaluating possible areas of origin and the microevolutionary processes that have shaped their morphology, genetics and distribution.
Location  Western Mediterranean area.
Methods  We applied amplified fragment length polymorphism (AFLP) markers to a total of 494 individuals belonging to 82 populations of Hypochaeris arachnoidea , H. glabra , H. radicata and H. salzmanniana to determine population structure.
Results  Populations with the largest proportion of private and rare AFLP fragments were found in Morocco. This region was consequently inferred to be the ancestral area for H. arachnoidea , H. glabra , H. radicata and H. salzmanniana . The Guadalquivir River (southern Spain) was inferred to be an effective dispersal barrier for H. glabra and H. radicata. The Strait of Gibraltar was inferred to be a somewhat weaker barrier than the Guadalquivir River for H. radicata and a much weaker barrier for H. glabra . The main barrier for H. salzmanniana coincides with the extension of the Rif Mountains to the Atlantic coast in Morocco, and the Strait of Gibraltar is a much weaker barrier for this species. Hypochaeris arachnoidea appears to have originated in the Atlas Mountains.
Main conclusions  The highest levels of genetic variation in La Mamora forest ( H. glabra and H. salzmanniana ) or the adjacent central Middle Atlas ( H. arachnoidea and H. radicata ) in Morocco suggest that these areas were a centre of origin of Hypochaeris sect. Hypochaeris . All three potential barriers – the Guadalquivir River, the Strait of Gibraltar, and the Rif Mountains – have been important in shaping genetic diversity in species of section Hypochaeris .  相似文献   
53.
One approach to the growing health problem of antibiotic resistant bacteria is the development of antimicrobial peptides (AMPs) as alternative treatments. The mechanism by which these AMPs selectively attack the bacterial membrane is not well understood, but is believed to depend on differences in membrane lipid composition. N-acylation of the small amidated hexapeptide, RRWQWR-NH(2) (LfB6), derived from the 25 amino acid bovine lactoferricin (LfB25) can be an effective means to improve its antimicrobial properties. Here, we investigate the interactions of C6-LfB6, N-acylated with a 6 carbon fatty acid, with model lipid bilayers with two distinct compositions: 3:1 POPE:POPG (negatively charged) and POPC (zwitterionic). Results from solid-state (2)H and (31)P NMR experiments are compared with those from an ensemble of all-atom molecular dynamic simulations running in aggregate more than 8.6ms. (2)H NMR spectra reveal no change in the lipid acyl chain order when C6-LfB6 is bound to the negatively charged membrane and only a slight decrease in order when it is bound to the zwitterionic membrane. (31)P NMR spectra show no significant perturbation of the phosphate head groups of either lipid system in the presence of C6-LfB6. Molecular dynamic simulations show that for the negatively charged membrane, the peptide's arginines drive the initial association with the membrane, followed by attachment of the tryptophans at the membrane-water interface, and finally by the insertion of the C6 tails deep into the bilayer. In contrast, the C6 tail leads the association with the zwitterionic membrane, with the tryptophans and arginines associating with the membrane-water interface in roughly the same amount of time. We find similar patterns in the order parameters from our simulations. Moreover, we find in the simulations that the C6 tail can insert 1-2? more deeply into the zwitterionic membrane and can exist in a wider range of angles than in the negatively charged membrane. We propose this is due to the larger area per lipid in the zwitterionic membrane, which provides more space for the C6 to insert and assume different orientations.  相似文献   
54.
Orobanche is the largest genus among the holoparasitic members of Orobanchaceae. We present the first molecular phylogenetic analysis (using nuclear ITS sequences) that includes members of all sections of Orobanche, Gymnocaulis, Myzorrhiza, Trionychon, and Orobanche. Orobanche is not monophyletic, but falls into two lineages: (1) the Orobanche group comprises Orobanche sect. Orobanche and the small Near Asian genus Diphelypaea and is characterized by a chromosome base number of x=19 and (2) the Phelipanche group contains Orobanche sects. Gymnocaulis, Myzorrhiza, and Trionychon and possesses a chromosome base number of x=12. The relationships between these two groups and to other genera such as Boschniakia or Cistanche remain unresolved. Within the Orobanche group, Orobanche macrolepis and Orobanche anatolica (including Orobanche colorata) constitute two phylogenetically distinct lineages. Intrasectional structurings proposed by some authors for O. sect. Orobanche are not confirmed by the molecular data. In most cases, intraspecific sequence divergence between accessions, if present, is negligible and not correlated with morphological or ecological traits. In a few cases, however, there is evidence for the presence of cryptic taxa.  相似文献   
55.
d-Arabinose 5-phosphate isomerases (APIs) catalyze the interconversion of d-ribulose 5-phosphate and d-arabinose 5-phosphate (A5P). A5P is an intermediate in the biosynthesis of 3-deoxy-d-manno-octulosonate (Kdo), an essential component of lipopolysaccharide, the lipopolysaccharide found in the outer membrane of Gram-negative bacteria. The genome of the Gram-positive pathogen Listeria monocytogenes contains a gene encoding a putative sugar isomerase domain API, Q723E8, with significant similarity to c3406, the only one of four APIs from Escherichia coli CFT073 that lacks a cystathionine-β-synthase domain. However, L. monocytogenes lacks genes encoding any of the other enzymes of the Kdo biosynthesis pathway. Realizing that the discovery of an API in a Gram-positive bacterium could provide insight into an alternate physiological role of A5P in the cell, we prepared and purified recombinant Q723E8. We found that Q723E8 does not possess API activity, but instead is a novel GPI (d-glucose 6-phosphate isomerase). However, the GPI activity of Q723E8 is weak compared with previously described GPIs. L. monocytogenes contains an ortholog of the well-studied two-domain bacterial GPI, so this maybe redundant. Based on this evidence glucose utilization is likely not the primary physiological role of Q723E8.  相似文献   
56.
Experimentally renal tissue hypoxia appears to play an important role in the pathogenesis of chronic kidney disease (CKD) and arterial hypertension (AHT). In this study we measured renal tissue oxygenation and its determinants in humans using blood oxygenation level-dependent magnetic resonance imaging (BOLD-MRI) under standardized hydration conditions. Four coronal slices were selected, and a multi gradient echo sequence was used to acquire T2* weighted images. The mean cortical and medullary R2* values ( = 1/T2*) were calculated before and after administration of IV furosemide, a low R2* indicating a high tissue oxygenation. We studied 195 subjects (95 CKD, 58 treated AHT, and 42 healthy controls). Mean cortical R2 and medullary R2* were not significantly different between the groups at baseline. In stimulated conditions (furosemide injection), the decrease in R2* was significantly blunted in patients with CKD and AHT. In multivariate linear regression analyses, neither cortical nor medullary R2* were associated with eGFR or blood pressure, but cortical R2* correlated positively with male gender, blood glucose and uric acid levels. In conclusion, our data show that kidney oxygenation is tightly regulated in CKD and hypertensive patients at rest. However, the metabolic response to acute changes in sodium transport is altered in CKD and in AHT, despite preserved renal function in the latter group. This suggests the presence of early renal metabolic alterations in hypertension. The correlations between cortical R2* values, male gender, glycemia and uric acid levels suggest that these factors interfere with the regulation of renal tissue oxygenation.  相似文献   
57.
Rhodopsin, a prototypical G protein-coupled receptor, is a membrane protein that can sense dim light. This highly effective photoreceptor is known to be sensitive to the composition of its lipidic environment, but the molecular mechanisms underlying this fine-tuned modulation of the receptor’s function and structural stability are not fully understood. There are two competing hypotheses to explain how this occurs: 1) lipid modulation occurs via solvent-like interactions, where lipid composition controls membrane properties like hydrophobic thickness, which in turn modulate the protein’s conformational equilibrium; or 2) protein-lipid interactions are ligand-like, with specific hot spots and long-lived binding events. By analyzing an ensemble of all-atom molecular dynamics simulations of five different states of rhodopsin, we show that a local ordering effect takes place in the membrane upon receptor activation. Likewise, docosahexaenoic acid acyl tails and phosphatidylethanolamine headgroups behave like weak ligands, preferentially binding to the receptor in inactive-like conformations and inducing subtle but significant structural changes.  相似文献   
58.
The distribution of pulmonary vascular resistance (PVR) with respect to compliance was determined using vascular occlusion in isolated lungs from lambs at five ages, from 2 wk before birth to 1 mo of age. The major change in PVR occurred in the pressure gradient across the middle compliant region (delta Pm), which dropped sharply at birth, remained low for 2 wk, and increased at 1 mo. Pulmonary vasoreactivity also varied with ages. Lungs at 0-4 days did not respond to hypoxia and responded poorly to prostaglandin F2 alpha (PGF2 alpha). In contrast, lungs at 13-33 days had significant increases in delta Pm and the gradient across relatively indistensible arterial vessels during hypoxia and increases in all gradients with PGF2 alpha. Ventilation of fetal lungs reduced PVR, mainly because of a 50% reduction in delta Pm. Our results demonstrate that the magnitude and distribution of PVR relative to compliance varied as a function of perinatal age and that pulmonary vasoreactivity depended on postnatal age. The major effect of ventilating fetal lungs was on the middle region.  相似文献   
59.
Electrophoretic variation and inheritance of four novel enzyme systems were studied in maize (Zea mays L.). A minimum of 10 genetic loci collectively encodes isozymes of aconitate hydratase (ACO; EC 4.2.1.3.), adenylate kinase (ADK; EC 2.7.4.3), NADH dehydrogenase (DIA; EC 1.6.99.—), and shikimate dehydrogenase (SAD; EC 1.1.1.25). At least four loci are responsible for the genetic control of ACO. Genetic data for two of the encoding loci,Aco1 andAco4, demonstrated that at least two maize ACOs are active as monomers. Analysis of organellar preparations suggests that ACO1 and ACO4 are localized in the cytosolic and mitochondrial subcellular fractions, respectively. Maize ADK is encoded by a single nuclear locus,Adk1, governing monomeric enzymes that are located in the chloroplasts. Two cytosolic and two mitochondrial forms of DIA were electrophoretically resolved. Segregation analyses demonstrated that the two cytosolic isozymes are controlled by separate loci,Dia1 andDia2, coding for products that are functional as monomers (DIA1) and dimers (DIA2). The major isozyme of SAD is apparently cytosolic, although an additional faintly staining plastid form may be present. Alleles atSad1 are each associated with two bands that cosegregate in controlled crosses. Linkage analyses and crosses with B-A translocation stocks were effective in determining the map locations of six loci, including the previously described but unmapped locusAcp4. Several of these loci were localized to sparsely mapped regions of the genome.Dia2 andAcp4 were placed on the distal portion of the long arm of chromosome 1, 12.6 map units apart.Dia1 was localized to chromosome 2, 22.2 centimorgans (cM) fromB1. Aco1 was mapped to chromosome 4, 6.2 cM fromsu1. Adk1 was placed on the poorly marked short arm of chromosome 6, 8.1 map units fromrgd1. Less than 1% recombination was observed betweenGlu1 (on chromosome 10) andSad1. In contrast to many other maize isozyme systems, there was little evidence of gene duplication or of parallel linkage relationships for these allozyme loci. This work was supported by grants from Pioneer Hi-Bred International, Inc., of Johnston, Iowa, the National Institute of Health (Research Grant GM11546), and the United States Department of Agriculture (Competitive Research Grant 83-CRCR-1-1273). This is Paper No. 11372 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh.  相似文献   
60.
The variable domain V3 in the outer glycoprotein gp 120 of HIV-1 is a highly important region with respect to immune response during the course of viral infection. Neutralizing antibodies are produced against this domain; in addition, it has been shown to be a functionally active epitope for T helper and cytotoxic T cells. The high degree of amino acid variability in individual HIV-isolates, however, limits the use of the V3-domain in approaches to vaccine development. In order to characterize the residues important for antibody interaction and binding to MHC class I proteins, we constructed a consensus sequence of the V3-domain with broad reactivity [1] and used synthetic peptides derived from this consensus with individual residues altered to alanine. These peptides were used as antigens in ELISA tests to define the amino acids which are important for binding to human and rabbit/anti-peptide immunoglobulins. In addition, we used these alanine-derived peptides in interaction studies with human HLA-A2.1 and mouse H-2Dd by testing their capacity to stabilize the respective MHC class I protein complexes on the surface of mutant cell lines T2 and RMA-S transfected with Dd gene. The experimental tests allowed us to define individual residues involved in antibody and MHC-protein interaction, respectively. In a further approach, we used those results to design interaction models with HLA-A2.1 and H-2Dd. Therefore, a structural model for H-2Dd was built that exhibits an overall similar conformation to the parental crystal structure of HLA-A2.1. The resulting interaction models show V3-peptide bound in an extended β-conformation with a bulge in its centre for both H-2Dd and HLA-A2.1 complexes. The N- and C-termini of V3 peptide reside in conserved pockets within both MHC-proteins. Anchoring residues could be determined that are crucial for the binding of the respective MHC class I haplotype. The cross-reactivity of V3-peptide in enhancing the expression of two different MHC class I molecules (H-2Dd and HLA-A2.1) is shown to be based on similar peptide binding that induces an almost identical peptide conformation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号