首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   675篇
  免费   73篇
  国内免费   1篇
  2023年   6篇
  2022年   10篇
  2021年   17篇
  2020年   14篇
  2019年   16篇
  2018年   20篇
  2017年   12篇
  2016年   13篇
  2015年   36篇
  2014年   41篇
  2013年   26篇
  2012年   55篇
  2011年   60篇
  2010年   31篇
  2009年   29篇
  2008年   47篇
  2007年   40篇
  2006年   36篇
  2005年   27篇
  2004年   38篇
  2003年   28篇
  2002年   36篇
  2001年   7篇
  2000年   10篇
  1999年   5篇
  1998年   6篇
  1996年   2篇
  1995年   3篇
  1994年   4篇
  1991年   4篇
  1990年   2篇
  1989年   4篇
  1988年   2篇
  1987年   4篇
  1986年   3篇
  1985年   6篇
  1984年   5篇
  1983年   7篇
  1982年   4篇
  1981年   4篇
  1980年   5篇
  1979年   3篇
  1977年   3篇
  1974年   2篇
  1973年   3篇
  1971年   1篇
  1969年   3篇
  1968年   1篇
  1967年   1篇
  1964年   1篇
排序方式: 共有749条查询结果,搜索用时 31 毫秒
71.
In order to detect linkage of the simulated complex disease Kofendrerd Personality Disorder across studies from multiple populations, we performed a genome scan meta-analysis (GSMA). Using the 7-cM microsatellite map, nonparametric multipoint linkage analyses were performed separately on each of the four simulated populations independently to determine p-values. The genome of each population was divided into 20-cM bin regions, and each bin was rank-ordered based on the most significant linkage p-value for that population in that region. The bin ranks were then averaged across all four studies to determine the most significant 20-cM regions over all studies. Statistical significance of the averaged bin ranks was determined from a normal distribution of randomly assigned rank averages. To narrow the region of interest for fine-mapping, the meta-analysis was repeated two additional times, with each of the 20-cM bins offset by 7 cM and 13 cM, respectively, creating regions of overlap with the original method. The 6-7 cM shared regions, where the highest averaged 20-cM bins from each of the three offsets overlap, designated the minimum region of maximum significance (MRMS). Application of the GSMA-MRMS method revealed genome wide significance (p-values refer to the average rank assigned to the bin) at regions including or adjacent to all of the simulated disease loci: chromosome 1 (p < 0.0001 for 160-167 cM, including D1), chromosome 3 (p-value < 0.0000001 for 287-294 cM, including D2), chromosome 5 (p-value < 0.001 for 0-7 cM, including D3), and chromosome 9 (p-value < 0.05 for 7-14 cM, the region adjacent to D4). This GSMA analysis approach demonstrates the power of linkage meta-analysis to detect multiple genes simultaneously for a complex disorder. The MRMS method enhances this powerful tool to focus on more localized regions of linkage.  相似文献   
72.
Lathyrus (Leguminosae; Papilionoideae) is the largest genus in tribe Fabeae and exhibits an intriguing extratropical distribution. We studied the systematics and biogeography of Lathyrus using sequence data, from accessions representing 53 species, for the internal transcribed spacer plus 5.8S-coding region of nuclear ribosomal DNA as well as the trnL-F and trnS-G regions of chloroplast DNA. Our results generally supported recent morphology-based classifications, resolving clades corresponding to sections Lathyrus and Lathyrostylis, but question the monophyly of the large, widespread section Orobus sensu Asmussen and Liston. Sections Orobus, Aphaca, and Pratensis form a predominantly northern Eurasian-New World clade. Within this clade, the North American and eastern Eurasian species, including both Holarctic species (L. palustris and L. japonicus), form a transberingian clade of relatively recent origin and diversification. The South American Notolathyrus group is distant from this transberingian lineage and should be reinstated as a distinct section within the northern Eurasian-New World clade. The Notolathyrus lineage reached the New World most probably through long-distance dispersal from Eurasia. The remaining sections in the genus are centered on the Mediterranean region.  相似文献   
73.
The trefoil factor family (TFF) peptides are important in gastro-intestinal mucosal protection and repair. Their mechanism of action remains unclear and receptors are sought. We aimed to identify and characterise proteins binding to TFF2. A fusion protein of mouse TFF2 with alkaline phosphatase was generated and used to probe 2-D protein blots of mouse stomach. The resulting spots were analysed by MS. The protein identified was characterised by bioinformatics, rapid amplification of cDNA ends, in situ hybridisation (ISH) and immunohistochemistry (IHC). Functional assays were performed in gastrointestinal cell lines. A single major murine protein was identified and named blottin. It was previously unknown as a translated product. Blottin is also present in rat and human; the latter gene is also known as GDDR. The predicted full-length proteins are 184 amino acids long (20 kDa), reducing to 164 amino acids (18 kDa) after signal peptide cleavage. ISH of gastrointestinal tissues shows abundant blottin mRNA in gastric surface and foveolar epithelium. IHC shows cytoplasmic staining for blottin protein, and by immunoelectron microscopy in mucus granules and Golgi stacks. Previous work showed that blottin is down-regulated in gastric cancers. Blottin contains a BRICHOS domain, and has 56% similarity with gastrokine-1. Cultured HT-29 cells express blottin and show increased DNA synthesis with antiblottin antibody; however, this effect is reversed by the immunising peptide. We have identified and characterised a TFF2-binding protein produced by gastric epithelium. Blottin may play a role in gastrointestinal mucosal protection and modulate gut epithelial cell proliferation.  相似文献   
74.
75.
Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae) is one of the most serious nonnative invasive forest insects discovered in North America in recent years. A. glabripennis is regulated by federal quarantines in the United States and Canada and is the subject of eradication programs that involve locating, cutting, and chipping all infested trees. Other control methods are needed to aid in eradication and to form an integrated management program in the event eradication fails. We conducted laboratory bioassays to determine the toxicity of two systemic insecticides, azadirachtin and imidacloprid, for potential control of A. glabripennis and the cottonwood borer, Plectrodera scalator (F.) (Coleoptera: Cerambycidae), a closely related native cerambycid. Larvae of both cerambycid species were fed artificial diet with dilutions of azadirachtin or imidacloprid for 14 wk. Both insecticides exhibited strong antifeedant effects and some toxicity against A. glabripennis and P. scalator larvae. For A. glabripennis, the highest larval mortality at the end of the bioassay was 60% for larvae fed artificial diet treated with azadirachtin (50 ppm) or imidacloprid (1.6 ppm). For P. scalator, the highest larval mortality at the end of the bioassay was 100% for larvae fed artificial diet treated with azadirachtin (50 ppm) or imidacloprid (160 ppm). At 14 wk, the LC50 values for P. scalator were 1.58 and 1.78 ppm for azadirachtin and imidacloprid, respectively. Larvae of both species gained weight when fed diet treated with formulation blanks (inert ingredients) or the water control but lost weight when fed diet treated with increasing concentrations of either azadirachtin or imidacloprid. In a separate experiment, A. glabripennis adults were fed maple twigs treated with high and low concentrations of imidacloprid. A. glabripennis adult mortality reached 100% after 13 d on twigs treated with 150 ppm imidacloprid and after 20 d on twigs treated with 15 ppm imidacloprid. There was no visible feeding by A. glabripennis adults on twigs treated at the higher imidacloprid rate, and feeding was significantly reduced for adults placed on twigs treated at the low imidacloprid rate compared with adults on untreated twigs. In summary, imidacloprid and azadirachtin had both antifeedant and toxic effects against A. glabripennis and P. scalator and have potential for use in management programs. Based on our results, the delivery of high and sustained insecticide concentrations will be needed to overcome the antifeedant effects and lengthy lethal time for both larvae and adults exposed to these insecticides.  相似文献   
76.
The legumes are the focus of numerous rapidly expanding genomic projects, all of which involve members of one part of the Leguminosae, the subfamily Papilionoideae. This subfamily is monophyletic, and recent studies concur on a series of clades within it that are well supported and have received informal names. These include the Cladrastis clade, the genistoids (including Lupinus), the mirbelioids, the dalbergioids (including Arachis), the millettioids (including Glycine and Phaseolus), and the hologalegina (galegoid) legumes, which comprise the robinioids (including Lotus) and the inverted repeat loss (IRL) clade (including Medicago and Pisum). The canavanine-accumulating legumes appear to fall into a single clade, consistent with the idea that the production of this toxic amino acid evolved only once. Recent advances in analytical techniques for dating phylogenies support an 'early explosion hypothesis', suggesting that much of the morphological diversity of the legume family evolved rapidly around 50-60 million years ago. Within the papilionoids, the divergence between Glycine and Medicago is estimated to have taken place around 54 million years ago. There is strong evidence for a palaeoduplication event that affected both Glycine (a millettioid) and Medicago (from the IRL clade). As more genomic data are forthcoming for Arachis, it will be possible to test whether this event extends to the dalbergioids.  相似文献   
77.
The 5′ untranslated regions (UTR) of chloroplast mRNAs often contain regulatory sequences that control RNA stability and/or translation. The petD chloroplast mRNA in Chlamydomonas reinhardtii has three such essential regulatory elements in its 362-nt long 5′ UTR. To further analyze these elements, we compared 5′ UTR sequences from four Chlamydomonas species (C. reinhardtii, C. incerta, C. moewusii and C. eugametos) and five independent strains of C. reinhardtii. Overall, these petD 5′ UTRs have relatively low sequence conservation across these species. In contrast, sequences of the three regulatory elements and their relative positions appear partially conserved. Functionality of the 5′ UTRs was tested in C. reinhardtii chloroplasts using β-glucuronidase reporter genes, and the nearly identical C. incerta petD functioned for mRNA stability and translation in C. reinhardtii chloroplasts while the more divergent C. eugametos petD did not. This identified what may be key features in these elements. We conclude that these petD regulatory elements, and possibly the corresponding trans-acting factors, function via mechanisms highly specific and surprisingly sensitive to minor sequence changes. This provides a new and broader perspective of these important regulatory sequences that affect photosynthesis in these algae.  相似文献   
78.
Restriction endonucleases (REases) with 8-base specificity are rare specimens in nature. NotI from Nocardia otitidis-caviarum (recognition sequence 5′-GCGGCCGC-3′) has been cloned, thus allowing for mutagenesis and screening for enzymes with altered 8-base recognition and cleavage activity. Variants possessing altered specificity have been isolated by the application of two genetic methods. In step 1, variant E156K was isolated by its ability to induce DNA-damage in an indicator strain expressing M.EagI (to protect 5′-NCGGCCGN-3′ sites). In step 2, the E156K allele was mutagenized with the objective of increasing enzyme activity towards the alternative substrate site: 5′-GCTGCCGC-3′. In this procedure, clones of interest were selected by their ability to eliminate a conditionally toxic substrate vector and induce the SOS response. Thus, specific DNA cleavage was linked to cell survival. The secondary substitutions M91V, F157C and V348M were each found to have a positive effect on specific activity when paired with E156K. For example, variant M91V/E156K cleaves 5′-GCTGCCGC-3′ with a specific activity of 8.2 × 104 U/mg, a 32-fold increase over variant E156K. A comprehensive analysis indicates that the cleavage specificity of M91V/E156K is relaxed to a small set of 8 bp substrates while retaining activity towards the NotI sequence.  相似文献   
79.
Knowledge of relatedness between pairs of individuals plays an important role in many research areas including evolutionary biology, quantitative genetics, and conservation. Pairwise relatedness estimation methods based on genetic data from highly variable molecular markers are now used extensively as a substitute for pedigrees. Although the sampling variance of the estimators has been intensively studied for the most common simple genetic relationships, such as unrelated, half- and full-sib, or parent-offspring, little attention has been paid to the average performance of the estimators, by which we mean the performance across all pairs of individuals in a sample. Here we apply two measures to quantify the average performance: first, misclassification rates between pairs of genetic relationships and, second, the proportion of variance explained in the pairwise relatedness estimates by the true population relatedness composition (i.e., the frequencies of different relationships in the population). Using simulated data derived from exceptionally good quality marker and pedigree data from five long-term projects of natural populations, we demonstrate that the average performance depends mainly on the population relatedness composition and may be improved by the marker data quality only within the limits of the population relatedness composition. Our five examples of vertebrate breeding systems suggest that due to the remarkably low variance in relatedness across the population, marker-based estimates may often have low power to address research questions of interest.  相似文献   
80.

Background  

Non-coding DNA sequences comprise a very large proportion of the total genomic content of mammals, most other vertebrates, many invertebrates, and most plants. Unraveling the functional significance of non-coding DNA depends on how well we are able to align non-coding DNA sequences. However, the alignment of non-coding DNA sequences is more difficult than aligning protein-coding sequences.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号