首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   676篇
  免费   73篇
  国内免费   1篇
  2023年   6篇
  2022年   11篇
  2021年   17篇
  2020年   14篇
  2019年   16篇
  2018年   20篇
  2017年   12篇
  2016年   13篇
  2015年   36篇
  2014年   41篇
  2013年   26篇
  2012年   55篇
  2011年   60篇
  2010年   31篇
  2009年   29篇
  2008年   47篇
  2007年   40篇
  2006年   36篇
  2005年   27篇
  2004年   38篇
  2003年   28篇
  2002年   36篇
  2001年   7篇
  2000年   10篇
  1999年   5篇
  1998年   6篇
  1996年   2篇
  1995年   3篇
  1994年   4篇
  1991年   4篇
  1990年   2篇
  1989年   4篇
  1988年   2篇
  1987年   4篇
  1986年   3篇
  1985年   6篇
  1984年   5篇
  1983年   7篇
  1982年   4篇
  1981年   4篇
  1980年   5篇
  1979年   3篇
  1977年   3篇
  1974年   2篇
  1973年   3篇
  1971年   1篇
  1969年   3篇
  1968年   1篇
  1967年   1篇
  1964年   1篇
排序方式: 共有750条查询结果,搜索用时 15 毫秒
61.
In this Letter we present data for a novel series of ICS for the treatment of asthma. 'Inhalation by design' principles have been applied to a series of highly potent steroidal GR agonists, with a focus on optimising the potential therapeutic index in human. Pharmacokinetic properties were tuned with high intrinsic clearance and low oral bioavailability in mind, to minimise systemic exposure and reduce systemically driven adverse events. High CYP mediated clearance as well as glucuronidation were targeted to achieve high intrinsic clearance coupled with multiple routes of clearance to minimise drug-drug interactions. Furthermore, pharmaceutical properties such as stability, crystallinity and solubility were considered to ensure compatibility with a dry powder inhaler. This work culminated in the identification of the clinical candidate 15, which demonstrates preclinically the desired efficacy and safety profiles confirming its potential as an inhaled agent for the treatment of asthma.  相似文献   
62.
Research on life history strategies of microbial symbionts is key to understanding the evolution of cooperation with hosts, but also their survival between hosts. Rhizobia are soil bacteria known for fixing nitrogen inside legume root nodules. Arbuscular mycorrhizal (AM) fungi are ubiquitous root symbionts that provide plants with nutrients and other benefits. Both kinds of symbionts employ strategies to reproduce during symbiosis using host resources; to repopulate the soil; to survive in the soil between hosts; and to find and infect new hosts. Here we focus on the fitness of the microbial symbionts and how interactions at each of these stages has shaped microbial life-history strategies. During symbiosis, microbial fitness could be increased by diverting more resources to individual reproduction, but that may trigger fitness-reducing host sanctions. To survive in the soil, symbionts employ sophisticated strategies, such as persister formation for rhizobia and reversal of spore germination by mycorrhizae. Interactions among symbionts, from rhizobial quorum sensing to fusion of genetically distinct fungal hyphae, increase adaptive plasticity. The evolutionary implications of these interactions and of microbial strategies to repopulate and survive in the soil are largely unexplored.  相似文献   
63.
Mitochondria are organelles centrally important for bioenergetics as well as regulation of apoptotic death in eukaryotic cells. High-mobility group box 1 (HMGB1), an evolutionarily conserved chromatin-associated protein which maintains nuclear homeostasis, is also a critical regulator of mitochondrial function and morphology. We show that heat shock protein beta-1 (HSPB1 or HSP27) is the downstream mediator of this effect. Disruption of the HSPB1 gene in embryonic fibroblasts with wild-type HMGB1 recapitulates the mitochondrial fragmentation, deficits in mitochondrial respiration, and adenosine triphosphate (ATP) synthesis observed with targeted deletion of HMGB1. Forced expression of HSPB1 reverses this phenotype in HMGB1 knockout cells. Mitochondrial effects mediated by HMGB1 regulation of HSPB1 expression serve as a defense against mitochondrial abnormality, enabling clearance and autophagy in the setting of cellular stress. Our findings reveal an essential role for HMGB1 in autophagic surveillance with important effects on mitochondrial quality control.  相似文献   
64.
65.

Purpose

Graft failure remains an obstacle to experimental subretinal cell transplantation. A key step is preparing a viable graft, as high levels of necrosis and apoptosis increase the risk of graft failure. Retinal grafts are commonly harvested from cell cultures. We termed the graft preparation procedure “transplant conditions” (TC). We hypothesized that culture conditions influenced graft viability, and investigated whether viability decreased following TC using a mouse retinal pigment epithelial (RPE) cell line, DH01.

Methods

Cell viability was assessed by trypan blue exclusion. Levels of apoptosis and necrosis in vitro were determined by flow cytometry for annexin V and propidium iodide and Western blot analysis for the pro- and cleaved forms of caspases 3 and 7. Graft viability in vivo was established by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and cleaved caspase 3 immunolabeling of subretinal allografts.

Results

Pre-confluent cultures had significantly less nonviable cells than post-confluent cultures (6.6%±0.8% vs. 13.1%±0.9%, p<0.01). Cell viability in either group was not altered significantly following TC. Caspases 3 and 7 were not altered by levels of confluence or following TC. Pre-confluent cultures had low levels of apoptosis/necrosis (5.6%±1.1%) that did not increase following TC (4.8%±0.5%). However, culturing beyond confluence led to progressively increasing levels of apoptosis and necrosis (up to 16.5%±0.9%). Allografts prepared from post-confluent cultures had significantly more TUNEL-positive cells 3 hours post-operatively than grafts of pre-confluent cells (12.7%±3.1% vs. 4.5%±1.4%, p<0.001). Subretinal grafts of post-confluent cells also had significantly higher rates of cleaved caspase 3 than pre-confluent grafts (20.2%±4.3% vs. 7.8%±1.8%, p<0.001).

Conclusion

Pre-confluent cells should be used to maximize graft cell viability.  相似文献   
66.
Toxicity testing is vital to protect human health from exposure to toxic chemicals in the environment. Furthermore, combining novel cellular models with molecular profiling technologies, such as metabolomics can add new insight into the molecular basis of toxicity and provide a rich source of biomarkers that are urgently required in a 21st Century approach to toxicology. We have used an NMR-based metabolic profiling approach to characterise for the first time the metabolome of the RPTEC/TERT1 cell line, an immortalised non-tumour human renal epithelial cell line that recapitulates phenotypic characteristics that are absent in other in vitro renal cell models. RPTEC/TERT1 cells were cultured with either the dosing vehicle (DMSO) or with exposure to one of six compounds (nifedipine, potassium bromate, monuron, D-mannitol, ochratoxin A and sodium diclofenac), several of which are known to cause renal effects. Aqueous intracellular and culture media metabolites were profiled by (1)H NMR spectroscopy at 6, 24 and 72 hours of exposure to a low effect dose (IC(10)). We defined the metabolome of the RPTEC/TERT1 cell line and used a principal component analysis approach to derive a panel of key metabolites, which were altered by chemical exposure. By considering only major changes (±1.5 fold change from control) across this metabolite panel we were able to show specific alterations to cellular processes associated with chemical treatment. Our findings suggest that metabolic profiling of RPTEC/TERT1 cells can report on the effect of chemical exposure on multiple cellular pathways at low-level exposure, producing different response profiles for the different compounds tested with a greater number of major metabolic effects observed in the toxin treated cells. Importantly, compounds with established links to chronic renal toxicity produced more diverse and severe perturbations to the cellular metabolome than non-toxic compounds in this model. As these changes can be rationalised with the different pharmacological and toxicity profiles of the chemicals it is suggested that metabolic profiling in the RPTEC/TERT1 model would be useful in investigating the mechanism of action of toxins at a low dose.  相似文献   
67.

Background

MicroRNA (miRNA) expression is broadly altered in cancer, but few studies have investigated miRNA deregulation in oral squamous cell carcinoma (OSCC). Epigenetic mechanisms are involved in the regulation of >30 miRNA genes in a range of tissues, and we aimed to investigate this further in OSCC.

Methods

TaqMan® qRT-PCR arrays and individual assays were used to profile miRNA expression in a panel of 25 tumors with matched adjacent tissues from patients with OSCC, and 8 control paired oral stroma and epithelium from healthy volunteers. Associated DNA methylation changes of candidate epigenetically deregulated miRNA genes were measured in the same samples using the MassArray® mass spectrometry platform. MiRNA expression and DNA methylation changes were also investigated in FACS sorted CD44high oral cancer stem cells from primary tumor samples (CSCs), and in oral rinse and saliva from 15 OSCC patients and 7 healthy volunteers.

Results

MiRNA expression patterns were consistent in healthy oral epithelium and stroma, but broadly altered in both tumor and adjacent tissue from OSCC patients. MiR-375 is repressed and miR-127 activated in OSCC, and we confirm previous reports of miR-137 hypermethylation in oral cancer. The miR-200 s/miR-205 were epigenetically activated in tumors vs normal tissues, but repressed in the absence of DNA hypermethylation specifically in CD44high oral CSCs. Aberrant miR-375 and miR-200a expression and miR-200c-141 methylation could be detected in and distinguish OSCC patient oral rinse and saliva from healthy volunteers, suggesting a potential clinical application for OSCC specific miRNA signatures in oral fluids.

Conclusions

MiRNA expression and DNA methylation changes are a common event in OSCC, and we suggest miR-375, miR-127, miR-137, the miR-200 family and miR-205 as promising candidates for future investigations. Although overall activated in OSCC, miR-200/miR-205 suppression in oral CSCs indicate that cell specific silencing of these miRNAs may drive tumor expansion and progression.  相似文献   
68.
69.
The Staphyliniformia is one of the most diverse lineages of Coleoptera, with representatives occupying every conceivable non-marine niche. Phylogenetic relationships among its varied families and lower taxa have defied resolution. The problem has been further complicated by the recent suggestion that another major coleopteran series, Scarabaeiformia, is derived from within it. Here we present the first phylogenetic analyses, based on 18S rDNA sequences and morphological data, to explicitly examine this possibility. Thorough evaluation of alternative alignments and tree construction methods support the contention that Scarabaeiformia is derived from within Staphyliniformia. Though the analyses yielded strong support for few family level groupings within the expanded Staphyliniformia, they conclusively support a close relationship between Hydraenidae and Ptiliidae, which has often been debated. The primary factor hindering additional resolution appears to be the inconsistent rate of divergence in 18S among these taxa.  相似文献   
70.

Background  

Completed genomes and environmental genomic sequences are bringing a significant contribution to understanding the evolution of gene families, microbial metabolism and community eco-physiology. Here, we used comparative genomics and phylogenetic analyses in conjunction with enzymatic data to probe the evolution and functions of a microbial nitrilase gene family. Nitrilases are relatively rare in bacterial genomes, their biological function being unclear.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号