首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   658篇
  免费   109篇
  767篇
  2023年   5篇
  2022年   7篇
  2021年   10篇
  2019年   9篇
  2018年   10篇
  2017年   12篇
  2016年   14篇
  2015年   18篇
  2014年   35篇
  2013年   24篇
  2012年   50篇
  2011年   42篇
  2010年   27篇
  2009年   18篇
  2008年   22篇
  2007年   34篇
  2006年   27篇
  2005年   16篇
  2004年   17篇
  2003年   20篇
  2002年   25篇
  2001年   20篇
  2000年   21篇
  1999年   20篇
  1998年   10篇
  1997年   6篇
  1996年   7篇
  1995年   8篇
  1994年   9篇
  1993年   7篇
  1992年   19篇
  1991年   14篇
  1990年   19篇
  1989年   15篇
  1988年   13篇
  1987年   10篇
  1986年   13篇
  1985年   8篇
  1984年   6篇
  1983年   6篇
  1981年   9篇
  1980年   8篇
  1979年   5篇
  1977年   4篇
  1976年   4篇
  1975年   10篇
  1974年   5篇
  1972年   6篇
  1971年   4篇
  1969年   4篇
排序方式: 共有767条查询结果,搜索用时 15 毫秒
101.
Gyrate atrophy (GA), a recessive eye disease involving progressive vision loss due to chorioretinal degeneration, is associated with the deficiency of the mitochondrial enzyme ornithine aminotransferase (OAT), with consequent hyperornithinemia. We and others have reported a number of missense mutations at the OAT locus which result in GA. Here we report a GA patient of Danish/Swedish ancestry in whom one OAT allele produces an mRNA that is missing a single 96-bp exon relative to the normal mRNA. Polymerase-chain-reaction amplification and sequencing revealed a 9-bp deletion covering the splice acceptor region of exon 5, resulting in the absence of exon 5 sequences from the mRNA with no disruption to the reading frame. This mutation, which was not present in 15 other independent GA patients, adds to the array of allelic heterogeneity observed in GA and represents the first example of a splicing mutation associated with this disorder.  相似文献   
102.
The apicomplexan parasite Toxoplasma gondii is able to suppress nitric oxide production in activated macrophages. A screen of over 6000 T. gondii insertional mutants identified two clones, which were consistently unable to suppress nitric oxide production from activated macrophages. One strain, called 89B7, grew at the same rate as wild‐type parasites in naïve macrophages, but unlike wild type, the mutant was degraded in activated macrophages. This degradation was marked by a reduction in the number of parasites within vacuoles over time, the loss of GRA4 and SAG1 protein staining by immunofluorescence assay, and the vesiculation and breakdown of the internal parasite ultrastructure by electron microscopy. The mutagenesis plasmid in the 89B7 clone disrupts the promoter of a 3.4 kb mRNA that encodes a predicted 68 kDa protein with a cleavable signal peptide and a patatin‐like phospholipase domain. Genetic complementation with the genomic locus of this patatin‐like protein restores the parasites ability to suppress nitric oxide and replicate in activated macrophages. A haemagglutinin‐tagged version of this patatin‐like protein shows punctate localization into atypical T. gondii structures within the parasite. This is the first study that defines a specific gene product that is needed for parasite survival in activated but not naïve macrophages.  相似文献   
103.
In eukaryotic chromosomes, DNA replication initiates at multiple origins. Large inter-origin gaps arise when several adjacent origins fail to fire. Little is known about how cells cope with this situation. We created a derivative of Saccharomyces cerevisiae chromosome III lacking all efficient origins, the 5ORIΔ-ΔR fragment, as a model for chromosomes with large inter-origin gaps. We used this construct in a modified synthetic genetic array screen to identify genes whose products facilitate replication of long inter-origin gaps. Genes identified are enriched in components of the DNA damage and replication stress signaling pathways. Mrc1p is activated by replication stress and mediates transduction of the replication stress signal to downstream proteins; however, the response-defective mrc1(AQ) allele did not affect 5ORIΔ-ΔR fragment maintenance, indicating that this pathway does not contribute to its stability. Deletions of genes encoding the DNA-damage-specific mediator, Rad9p, and several components shared between the two signaling pathways preferentially destabilized the 5ORIΔ-ΔR fragment, implicating the DNA damage response pathway in its maintenance. We found unexpected differences between contributions of components of the DNA damage response pathway to maintenance of ORIΔ chromosome derivatives and their contributions to DNA repair. Of the effector kinases encoded by RAD53 and CHK1, Chk1p appears to be more important in wild-type cells for reducing chromosomal instability caused by origin depletion, while Rad53p becomes important in the absence of Chk1p. In contrast, RAD53 plays a more important role than CHK1 in cell survival and replication fork stability following treatment with DNA damaging agents and hydroxyurea. Maintenance of ORIΔ chromosomes does not depend on homologous recombination. These observations suggest that a DNA-damage-independent mechanism enhances ORIΔ chromosome stability. Thus, components of the DNA damage response pathway contribute to genome stability, not simply by detecting and responding to DNA template damage, but also by facilitating replication of large inter-origin gaps.  相似文献   
104.
l-Glutamate decarboxylase (GAD; EC 4.1.1.15) is the rate-limiting enzyme involved in the synthesis of gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the mammalian brain. Imbalance in the conversion of glutamate to GABA has been implicated in a host of human diseases. Studies on the structure, function, and therapeutic use of GAD have been precluded by insufficient quantities of purified active enzyme. Here we report a novel methodology for the expression and large-scale production of enzymatically active, pure, recombinant human GAD65 and GAD67. This method circumvents the sequestering of expressed protein into insoluble inclusion bodies and reduces production of truncated proteins. The availability of sufficient quantities of purified HGAD65 and HGAD67 has allowed for the production of specific polyclonal antibodies that discriminate between the two isoforms. This methodology, in addition to providing key human brain enzymes, may be generally applicable to other systems.  相似文献   
105.
Malaria is a substantial global health burden with 229 million cases in 2019 and 450,000 deaths annually. Plasmodium vivax is the most widespread malaria-causing parasite putting 2.5 billion people at risk of infection. P. vivax has a dormant liver stage and therefore can exist for long periods undetected. Its blood-stage can cause severe reactions and hospitalization. Few treatment and detection options are available for this pathogen. A unique characteristic of P. vivax is that it depends on the Duffy antigen/receptor for chemokines (DARC) on the surface of host red blood cells for invasion. P. vivax employs the Duffy binding protein (DBP) to bind to DARC. We first de novo designed a three helical bundle scaffolding database which was screened via protease digestions for stability. Protease-resistant scaffolds highlighted thresholds for stability, which we utilized for selecting DARC mimetics that we subsequentially designed through grafting and redesign of these scaffolds. The optimized design small helical protein disrupts the DBP:DARC interaction. The inhibitor blocks the receptor binding site on DBP and thus forms a strong foundation for a therapeutic that will inhibit reticulocyte infection and prevent the pathogenesis of P. vivax malaria.  相似文献   
106.
107.
High quality Fourier transform infrared (FTIR) spectra were acquired from living Micrasterias hardyi cells maintained in an IR transparent flow-through cell using a FTIR microscope coupled to a synchrotron light source. Spectral maps of living, nutrient-replete cells showed band intensities consistent with the known location of the nucleus and the chloroplasts. These were very similar to maps acquired from fixed, air-dried cells. Bands due to lipids were lowest in absorbance in the region of the nucleus and highest in the chloroplast region and this trend was reversed for the absorbance of bands attributed to protein. Spectra acquired in 10 microm steps across living phosphorus-starved (P-starved) cells, repeated approximately every 30 min, were consistent over time, and bands correlated well with the known position of the nucleus and the observed chloroplasts, corroborating the observations with replete cells. Experiments in which missing nutrients were re-supplied to starved cells showed that cells could be maintained in a functional state in the flow-through cell for up to one day. Nitrogen-starved cells re-supplied with N showed an increase in lipid in all positions measured across the cell over a 23 h period of re-supply, with the largest increases occurring in positions where the chloroplasts were observed. Re-supply of phosphorus to P-starved cells produced no changes in bands attributable to lipid or protein. Due to their thin cell body ( approximately 12 microm) and large diameter ( approximately 300 microm) Micrasterias sp. make an ideal spectroscopic model to study nutrient kinetics in algal cells.  相似文献   
108.
We present an efficient method of introducing fluorophore labels at selected locations in a large RNA. The method is based on specific and highly efficient hybridization between a fluorophore-containing DNA oligonucleotide and a modular hairpin loop replacing a functionally unimportant hairpin loop in the RNA. We demonstrate its feasibility using a 255-nucleotide RNA derived from the catalytic domain of RNase P from Bacillus subtilis. Hybridization of the DNA oligonucleotide to the modular hairpin loop minimally perturbs the structure and function of this RNA. This labeling scheme should be applicable in studies of RNA conformational dynamics by ensemble and single molecule fluorescence methods.  相似文献   
109.
110.
The reaction of the organolutetium complex (CGC′)LuCl3Li2(THF), (1; CGC′ = [Me2Si(3-pyrrolidinyl-1-η5-indenyl)(tBuN)]2−) with NaN(TMS)2 provides a straightforward route to the halide-free organolutetium amido complex, (CGC′)LuN(TMS)2(THF) (2). These new complexes were characterized by standard analytical methodology. The monomeric complex 2 crystallizes in the monoclinic space group P21/c with four molecules in a cell of dimensions a = 11.1566(6) Å, b = 14.9805(8) Å, c = 22.18007(12) Å, and β = 90.0620(10)°. Complex 2 is an active precatalyst for the intramolecular hydroamination/cyclization of representative aminoalkenes with turnover frequencies as high as 205 h−1 at room temperature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号