首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89770篇
  免费   7930篇
  国内免费   46篇
  97746篇
  2023年   308篇
  2022年   765篇
  2021年   1671篇
  2020年   957篇
  2019年   1193篇
  2018年   1550篇
  2017年   1341篇
  2016年   2297篇
  2015年   3908篇
  2014年   4309篇
  2013年   5062篇
  2012年   6947篇
  2011年   6806篇
  2010年   4375篇
  2009年   3970篇
  2008年   5683篇
  2007年   5669篇
  2006年   5424篇
  2005年   5211篇
  2004年   5025篇
  2003年   4796篇
  2002年   4510篇
  2001年   881篇
  2000年   647篇
  1999年   981篇
  1998年   1257篇
  1997年   835篇
  1996年   755篇
  1995年   668篇
  1994年   625篇
  1993年   682篇
  1992年   572篇
  1991年   537篇
  1990年   475篇
  1989年   403篇
  1988年   434篇
  1987年   351篇
  1986年   323篇
  1985年   408篇
  1984年   533篇
  1983年   410篇
  1982年   508篇
  1981年   497篇
  1980年   419篇
  1979年   303篇
  1978年   329篇
  1977年   284篇
  1976年   268篇
  1975年   212篇
  1974年   245篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
961.
962.
The induction of plant defense-related responses by chitin oligomers and the Rhizobium meliloti lipo-chito-oligosaccharide nodulation signals (Nod factors) in Medicago cell cultures and roots was investigated by following the expression of genes encoding enzymes of the isoflavonoid biosynthetic pathway, such as chalcone synthase, chalcone reductase, isoflavone reductase, as well as genes encoding a pathogenesis-related protein and a peroxidase. In suspension-cultured cells, all genes except the peroxidase gene were induced by both the R. meliloti Nod factor NodRm-IV(C16:2,S) and chitin oligomers with a minimum of three sugar residues. However, activation of these genes was not elicited by the symbiotically inactive, desulfated NodRm-IV(C16:2). Moreover, the cells were more sensitive to the chitin oligosaccharides than to the Nod factor. Analysis of flavonoids in Medicago microcallus cultures revealed differences between cells treated with N -acetyl-chitotetraose and those treated with Nod factor and demonstrated increased production of the phytoalexin medicarpin in the presence of Nod factor. In Medicago roots, none of the tested genes was activated by the N -acetylchitotetraose, whereas the Nod factor at micro-molar concentration enhanced transient expression of the isoflavonoid biosynthetic genes. The differential responses to Nod factors and chitin oligomers suggest that Medicago cells possess distinct perception systems for these related molecules.  相似文献   
963.
The inhibition of aromatase, the enzyme responsible for converting androgens to estrogens, is therapeutically useful for the endocrine treatment of hormone-dependent breast cancer. Research by our laboratory has focused on developing competitive and irreversible steroidal aromatase inhibitors, with an emphasis on synthesis and biochemistry of 7α-substituted androstenediones. Numerous 7α-thiosubstituted androst-4-ene-3,17-diones are potent competitive inhibitors, and several 1,4-diene analogs, such as 7α-(4′-aminophenylthio)-androsta-1,4-diene-3,17-dione (7α-APTADD), have demonstrated effective enzyme-activated irreversible inhibition of aromatase in microsomal enzyme assays. One focus of current research is to examine the effectiveness and biochemical pharmacology of 7α-APTADD in vivo. In the hormone-dependent 7,12-dimethylbenz(a)anthracene (DMBA)-induced rat mammary carcinoma model system, 7α-APTADD at a 50 mg/kg/day dose caused an initial decrease in mean tumor volume during the first week, and tumor volume remained unchanged throughout the remaining 5-week treatment period. This agent lowers serum estradiol levels and inhibits ovarian aromatase activity. A second research area has focused on the synthesis of more metabolically stable inhibitors by replacing the thioether linkage at the 7α position with a carbon-carbon linkage. Several 7α-arylaliphatic androst-4-ene-3,17-diones were synthesized by 1,6-conjugate additions of appropriate organocuprates to a protected androst-4,6-diene or by 1,4-conjugate additions to a seco-A-ring steroid intermediate. These compounds were all potent inhibitors of aromatase with apparent Kis ranging between 13 and 19 nM. Extension of the research on these 7α-arylaliphatic androgens includes the introduction of a C1---C2 double bond in the A-ring to provide enzyme-activated irreversible inhibitors. The desired 7α-arylaliphatic androsta-1,4-diene-3,17-diones were obtained from their corresponding 7α-arylaliphatic androst-4-ene-3,17-diones by oxidation with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). These inhibitors demonstrated enzyme-mediated inactivation of aromatase with apparent kinacts ranging from 4.4 × 10−4 to 1.90 x 10−3 s−1. The best inactivator of the series was 7α-phenpropylandrosta-1,4-diene-3,17-dione, which exhibited a T1/2 of 6.08 min. Aromatase inhibition was also observed in MCF-7 human mammary carcinoma cell cultures and in JAr human choriocarcinoma cell cultures, exhibiting IC50 values of 64-328 nM. The 7α-arylaliphatic androgens thus demonstrate potent inhibition of aromatase in both microsomal incubations and in choriocarcinoma cell lines expressing aromatase enzymatic activity. Additionally, the results from these studies provide further evidence for the presence of a hydrophobic binding pocket existing near the 7α-position of the steroid in the active site of aromatase. The size of the 7α-substituent influences optimal binding of steroidal inhibitors to the active site and affects the extent of enzyme-mediated inactivation observed with androsta-1,4-diene-3,17-dione analogs.  相似文献   
964.
Transferrin and transferrin receptors play an important role in the transport of iron into the brain. To determine whether gallium enters the brain by the same mechanism, uptakes of Ga and 59Fe have been compared under controlled conditions. Rates of gallium penetration into brain (K) were four times slower than those for 59Fe. Kin for Ga when infused with citrate were 0.88 ± 0.24 and 0.94 ± 0.39 x 10 ml gh for cerebral hemisphere and cerebellum, respectively. When infused as the transferrin complex, Ga uptake into the brain was not different from that when infused with citrate. The presence of the anti-transferrin receptor antibody OX-26 significantly reduced uptake of Fe by 60% and 64% into cerebral hemisphere and cerebellum, respectively. By contrast, pretreatment of rats with OX-26 enhanced the uptake of Ga into brain, particularly when infused with citrate; mean increases in uptake of Ga were 120% and 144% for cerebral hemisphere and cerebellum, respectively. Purified Ga-transferrin was also taken up into both brain regions examined in the presence of OX-26. These results indicate that the transport of non-transferrin bound gallium is an important mechanism for gallium uptake into brain.  相似文献   
965.
The stress sensitivity, determined in copper exposureexperiments and in survival in air tests, and thegenetic structure, measured by means of isoenzymeelectrophoresis, were assessed in populations of theBaltic clam Macoma balthica (L.) from itssouthern to its northern distribution limit, in orderto test the hypotheses that near the distributionlimit the clams would be more stress sensitive andwould have a lower genetic variability. Thepopulations in west and north Europe show a stronggenetic resemblance. The populations in the sub-ArcticWhite Sea are genetically slightly different, and showa low stress sensitivity. The populations in theArctic Pechora Sea are genetically very distant fromthe other populations, and show the lowest stresssensitivity. Near the southern distribution limit, inagreement with the hypotheses, genetic variability islow and stress sensitivity high. On the other hand, incontrast to expectation, near the northerndistribution limit, in the populations of the PechoraSea, the genetic variability was higher, thus notreduced, and the stress sensitivity was low comparedto all other populations. Yet, it remains a questionif such is due to gradual physiologicalacclimatization (and ongoing differential selection)or to genetic adaptation.  相似文献   
966.
Transport of proteins to the thylakoid lumen is accomplished by two precursor-specific pathways, the Sec and the unique Delta pH transport systems. Pathway selection is specified by transient lumen-targeting domains (LTDs) on precursor proteins. Here, chimeric and mutant LTDs were used to identify elements responsible for targeting specificity. The results showed that: (a) minimal signal peptide motifs consisting of charged N, hydrophobic H, and cleavage C domains were both necessary and sufficient for pathway-specific targeting; (b) exclusive targeting to the Delta pH pathway requires a twin arginine in the N domain and an H domain that is incompatible with the Sec pathway; (c) exclusive targeting to the Sec pathway is achieved by an N domain that lacks the twin arginine, although the twin arginine was completely compatible with the Sec system. A dual-targeting signal peptide, constructed by combining Delta pH and Sec domains, was used to simultaneously compare the transport capability of both pathways when confronted with different passenger proteins. Whereas Sec passengers were efficiently transported by both pathways, Delta pH passengers were arrested in translocation on the Sec pathway. This finding suggests that the Delta pH mechanism evolved to accommodate transport of proteins incompatible with the thylakoid Sec machinery.  相似文献   
967.
968.
Abstract: The mouse mutant coloboma ( Cm /+), which exhibits profound spontaneous hyperactivity and bears a deletion mutation on chromosome 2, including the gene encoding synaptosomal protein SNAP-25, has been proposed to model aspects of attention-deficit hyperactivity disorder. Increasing evidence suggests a crucial role for SNAP-25 in the release of both classical neurotransmitters and neuropeptides. In the present study, we compared the release of specific neurotransmitters in vitro from synaptosomes and slices of selected brain regions from Cm /+ mice with that of +/+ mice. The release of dopamine (DA) and serotonin (5-HT) from striatum, and of arginine vasopressin and corticotropin-releasing factor from hypothalamus and amygdala is calcium-dependent. Glutamate release from and content in cortical synaptosomes of Cm /+ mice are greatly reduced, which might contribute to the learning deficits in these mutants. In dorsal striatum of Cm /+ mutants, but not ventral striatum, KCI-induced release of DA is completely blocked and that of 5-HT is significantly attenuated, suggesting that striatal DA and 5-HT deficiencies may be involved in hyperactivity. Further, although acetylcholine failed to induce hypothalamic corticotropin-releasing factor release from Cm /+ slices, restraint stress increased plasma corticosterone levels in Cm /+ mice to a significantly higher level than in +/+ mice, suggesting an important role for arginine vasopressin in hypothalamic-pituitary-adrenal axis activation. These results suggest that reduced SNAP-25 expression may contribute to a region-specific and neurotransmitter-specific deficiency in neurotransmitter release.  相似文献   
969.
Abstract: Neuronally differentiated PC12 cells undergo synchronous apoptosis when deprived of nerve growth factor (NGF). Here we show that NGF withdrawal induces actinomycin D- and cycloheximide-sensitive caspase (ICE-like) activity. The peptide inhibitor of caspase activity, N -acetyl-Asp-Glu-Val-Asp-aldehyde, was more potent than acetyl-Tyr-Val-Ala-Asp-chloromethyl ketone in preventing NGF withdrawal-induced apoptosis, suggesting an important role for caspase-3 (CPP32)-like proteases. We observed a peak of reactive oxygen species (ROS) 6 h after NGF withdrawal. ROS appear to be required for apoptosis, because cell death is prevented by the free radical spin trap, N-tert -butyl-α-phenylnitrone, and the antioxidant, N -acetylcysteine. ROS production was blocked by actinomycin D, cycloheximide, and caspase protease inhibitors, suggesting that ROS generation is downstream of new mRNA and protein synthesis and activation of caspases. Forced expression of either BCL-2 or the BCL-2-binding protein BAG-1 blocked NGF withdrawal-induced apoptosis, activation of caspases, and ROS generation, showing that they function upstream of caspases. Coexpression of BCL-2 and BAG-1 was more protective than expression of either protein alone.  相似文献   
970.
Abstract: The role of the transvesicular protonmotive force in synaptic vesicle recycling was investigated in cultured cerebellar granule cells. The vesicular V-ATPase was inhibited by 1 µ M bafilomycin A1; as an alternative, the pH component of the gradient was selectively collapsed by equilibration of the cells with 10 m M methylamine and monitored with the fluorescent probe Lysosensor Green. Electrical field-evoked exocytosis of d -[3H]aspartate was inhibited by bafilomycin A1 but not by methylamine, indicating that a transvesicular membrane potential rather than pH gradient is required for transmitter retention within vesicles. In contrast, neither compound affected the field-evoked uptake, recycling, or destaining of the vesicle-specific dye FM2-10; thus, vesicles whose lumens were neutral and/or depleted of transmitter could still recycle in the nerve terminal. No exhaustion of d -[3H]aspartate exocytosis was observed when cells were subjected to six consecutive trains of field stimuli (40 Hz/10 s separated by 10 s). In contrast, the release of preloaded FM2-10 was reduced by ∼50%, with each stimulus indicating that unlabeled vesicles with accumulated d -[3H]aspartate were competing with labeled vesicles for exocytosis. As d -[3H]aspartate was accumulated rapidly across the vesicle membrane from the large cytoplasmic pool, the transmitter-loaded but unlabelled vesicles may represent refilled recycling vesicles. FM2-10 destaining and d -[3H]aspartate exocytosis were reduced in parallel at low frequencies, challenging a role for transient vesicle fusion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号