首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4190篇
  免费   382篇
  国内免费   3篇
  4575篇
  2023年   31篇
  2022年   61篇
  2021年   131篇
  2020年   80篇
  2019年   95篇
  2018年   118篇
  2017年   111篇
  2016年   175篇
  2015年   311篇
  2014年   282篇
  2013年   276篇
  2012年   453篇
  2011年   363篇
  2010年   234篇
  2009年   189篇
  2008年   275篇
  2007年   245篇
  2006年   200篇
  2005年   191篇
  2004年   132篇
  2003年   139篇
  2002年   113篇
  2001年   23篇
  2000年   24篇
  1999年   17篇
  1998年   27篇
  1997年   14篇
  1996年   9篇
  1995年   12篇
  1994年   10篇
  1993年   12篇
  1992年   21篇
  1991年   15篇
  1990年   11篇
  1988年   13篇
  1987年   5篇
  1985年   6篇
  1984年   17篇
  1983年   8篇
  1982年   8篇
  1981年   10篇
  1980年   5篇
  1979年   9篇
  1978年   6篇
  1976年   8篇
  1975年   11篇
  1974年   5篇
  1972年   7篇
  1971年   5篇
  1968年   7篇
排序方式: 共有4575条查询结果,搜索用时 15 毫秒
121.
Soy isoflavones are thought to have a cardioprotective effect that is partly mediated by an inhibitory influence on the oxidation of low density lipoprotein (LDL). However, the aglycone forms investigated in many previous studies do not circulate in appreciable quantities because they are metabolised in the gut and liver. We investigated effects of various isoflavone metabolites, including for the first time the sulphated conjugates formed in the liver and the mucosa of the small intestine, on copper-induced LDL oxidation. The parent aglycones inhibited oxidation, although only 5% as well as quercetin. Metabolism increased or decreased their effectiveness. Equol inhibited 2.65-fold better than its parent compound daidzein and 8-hydroxydaidzein, not previously assessed, was 12.5-fold better than daidzein. However, monosulphated conjugates of genistein, daidzein and equol were much less effective and disulphates completely ineffective. Since almost all isoflavones circulate as conjugates, these data suggest that despite the increased potency produced by some metabolic changes, isoflavones may not be effective antioxidants in vivo unless they are deconjugated again.  相似文献   
122.
We previously discovered that BapA, a bacterial beta-peptidyl aminopeptidase, is able to hydrolyze two otherwise metabolically inert beta-peptides [Geueke B, Namoto K, Seebach D and Kohler H-PE (2005) J Bacteriol 187, 5910-5917]. Here, we describe the purification and characterization of two distinct bacterial beta-peptidyl aminopeptidases that originated from different environmental isolates. Both bapA genes encode a preprotein with a signal sequence and were flanked by ORFs that code for enzymes with similar predicted functions. To form the active enzymes, which had an (alphabeta)(4) quaternary structure, the preproteins needed to be cleaved into two subunits. The two beta-peptidyl aminopeptidases had 86% amino acid sequence identity, hydrolyzed a variety of beta-peptides and mixed beta/alpha-peptides, and exhibited unique substrate specificities. The prerequisite for peptides being accepted as substrates was the presence of a beta-amino acid at the N-terminus; peptide substrates with an N-terminal alpha-amino acid were not hydrolyzed at all. Both enzymes cleaved the peptide bond between the N-terminal beta-amino acid and the amino acid at the second position of tripeptidic substrates of the general structure H-betahXaa-Ile-betahTyr-OH according to the following preferences with regard to the side chain of the N-terminal beta-amino acid: aliphatic and aromatic > OH-containing > hydrogen, basic and polar. Experiments with the tripeptides H-d-betahVal-Ile-betahTyr-OH and H-betahVal-Ile-betahTyr-OH demonstrated that the two BapA enzymes preferred the peptide with the l-configuration of the N-terminal beta-homovaline residue as a substrate.  相似文献   
123.
We report a new approach for molecular sex identification of extant Ursinae and Tremarctinae bears. Two Y‐specific fragments (SMCY and 318.2) and one X‐specific fragment (ZFX) are amplified in a multiplex PCR, yielding a double test for male‐specific amplification and an internal positive control. The primers were designed and tested to be bear‐specific, thereby minimizing the risk of cross‐amplification in other species including humans. The high sensitivity and small amplicon sizes (100, 124, 160 base pairs) facilitate analysis of non‐invasively obtained DNA material. DNA from tissue and blood as well as from 30 non‐invasively collected hair and faeces yielded clear and easily interpretable results. The fragments were detected both by standard gel electrophoresis and automated capillary electrophoresis.  相似文献   
124.
The glucose transporter of the bacterial phosphotransferase system mediates sugar transport across the cytoplasmic membrane concomitant with sugar phosphorylation. It consists of a cytoplasmic subunit IIA(Glc) and the transmembrane subunit IICB(Glc). IICB(Glc) was purified to homogeneity by urea/alkali washing of membranes and nickel-chelate affinity chromatography. About 1.5 mg highly pure IICB(Glc) representing 77% of the total activity present in the membranes was obtained from 8g (wet weight) of cells. IICB(Glc) was reconstituted into lipid bilayers by temperature-controlled dialysis to yield small 2D crystals and by a rapid detergent-dilution procedure to yield densely packed vesicles. Electron microscopy and digital image processing of the negatively stained 2D crystals revealed a trigonal lattice with a unit cell size of a = b = 14.5 nm. The unit cell morphology exhibited three dimers of IICB(Glc) surrounding the threefold symmetry center. Single particle analysis of IICB(Glc) in proteoliposomes obtained by detergent dialysis also showed predominantly dimeric structures.  相似文献   
125.
Multiple pathways exist to repair DNA damage induced by methylating and crosslinking agents in Arabidopsis thaliana. The SWI2/SNF2 translocase RAD5A, the functional homolog of budding yeast Rad5 that is required for the error‐free branch of post‐replicative repair, plays a surprisingly prominent role in the repair of both kinds of lesions in Arabidopsis. Here we show that both the ATPase domain and the ubiquitination function of the RING domain of the Arabidopsis protein are essential for the cellular response to different forms of DNA damage. To define the exact role of RAD5A within the complex network of DNA repair pathways, we crossed the rad5a mutant line with mutants of different known repair factors of Arabidopsis. We had previously shown that RAD5A acts independently of two main pathways of replication‐associated DNA repair defined by the helicase RECQ4A and the endonuclease MUS81. The enhanced sensitivity of all double mutants tested in this study indicates that the repair of damaged DNA by RAD5A also occurs independently of nucleotide excision repair (AtRAD1), single‐strand break repair (AtPARP1), as well as microhomology‐mediated double‐strand break repair (AtTEB). Moreover, RAD5A can partially complement for a deficient AtATM‐mediated DNA damage response in plants, as the double mutant shows phenotypic growth defects.  相似文献   
126.
To understand how root growth responds to temperature, we used kinematic analysis to quantify division and expansion parameters in the root of Arabidopsis thaliana. Plants were grown at temperatures from 15 to 30 °C, given continuously from germination. Over these temperatures, root length varies more than threefold in the wild type but by only twofold in a double mutant for phytochrome‐interacting factor 4 and 5. For kinematics, the spatial profile of velocity was obtained with new software, Stripflow. We find that 30 °C truncates the elongation zone and curtails cell production, responses that probably reflect the elicitation of a common pathway for handling severe stresses. Curiously, rates of cell division at all temperatures are closely correlated with rates of radial expansion. Between 15 to 25 °C, root growth rate, maximal elemental elongation rate, and final cell length scale positively with temperature whereas the length of the meristem scales negatively. Non‐linear temperature scaling characterizes meristem cell number, time to transit through either meristem or elongation zone, and average cell division rate. Surprisingly, the length of the elongation zone and the total rate of cell production are temperature invariant, constancies that have implications for our understanding of how the underlying cellular processes are integrated.  相似文献   
127.
128.
T helper (Th)17 cells represent a unique subset of CD4+ T cells and are vital for clearance of extracellular pathogens including bacteria and fungi. However, Th17 cells are also involved in orchestrating autoimmunity. By employing quantitative surface proteomics, we found that the evolutionarily conserved prohibitins (PHB1/2) are highly expressed on the surface of both murine and human Th17 cells. Increased expression of PHBs at the cell surface contributed to enhanced CRAF/MAPK activation in Th17 cells. Targeting surface‐expressed PHBs on Th17 cells with ligands such as Vi polysaccharide (Typhim vaccine) inhibited CRAF‐MAPK pathway, reduced interleukin (IL)‐17 expression and ameliorated disease pathology with an increase in FOXP3+‐expressing Tregs in an animal model for multiple sclerosis (MS). Interestingly, we detected a CD4+ T cell population with high PHB1 surface expression in blood samples from MS patients in comparison with age‐ and sex‐matched healthy subjects. Our observations suggest a pivotal role for the PHB‐CRAF‐MAPK signalling axis in regulating the polarization and pathogenicity of Th17 cells and unveil druggable targets in autoimmune disorders such as MS.  相似文献   
129.
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号