全文获取类型
收费全文 | 4653篇 |
免费 | 457篇 |
国内免费 | 3篇 |
专业分类
5113篇 |
出版年
2023年 | 31篇 |
2022年 | 62篇 |
2021年 | 142篇 |
2020年 | 83篇 |
2019年 | 99篇 |
2018年 | 121篇 |
2017年 | 117篇 |
2016年 | 186篇 |
2015年 | 331篇 |
2014年 | 297篇 |
2013年 | 309篇 |
2012年 | 482篇 |
2011年 | 397篇 |
2010年 | 250篇 |
2009年 | 207篇 |
2008年 | 300篇 |
2007年 | 278篇 |
2006年 | 232篇 |
2005年 | 218篇 |
2004年 | 152篇 |
2003年 | 153篇 |
2002年 | 130篇 |
2001年 | 36篇 |
2000年 | 40篇 |
1999年 | 34篇 |
1998年 | 37篇 |
1997年 | 21篇 |
1996年 | 16篇 |
1995年 | 17篇 |
1994年 | 17篇 |
1993年 | 27篇 |
1992年 | 27篇 |
1991年 | 21篇 |
1990年 | 17篇 |
1989年 | 14篇 |
1988年 | 20篇 |
1987年 | 7篇 |
1986年 | 8篇 |
1985年 | 11篇 |
1984年 | 18篇 |
1983年 | 9篇 |
1982年 | 8篇 |
1981年 | 15篇 |
1979年 | 11篇 |
1978年 | 9篇 |
1975年 | 13篇 |
1973年 | 6篇 |
1972年 | 9篇 |
1970年 | 6篇 |
1969年 | 10篇 |
排序方式: 共有5113条查询结果,搜索用时 15 毫秒
21.
Solveig Herrmann Milena Ninkovic Tobias Kohl éva L?rinczi Luis A. Pardo 《The Journal of biological chemistry》2012,287(53):44151-44163
KV10.1 is a voltage-gated potassium channel aberrantly expressed in many cases of cancer, and participates in cancer initiation and tumor progression. Its action as an oncoprotein can be inhibited by a functional monoclonal antibody, indicating a role for channels located at the plasma membrane, accessible to the antibody. Cortactin is an actin-interacting protein implicated in cytoskeletal architecture and often amplified in several types of cancer. In this study, we describe a physical and functional interaction between cortactin and KV10.1. Binding of these two proteins occurs between the C terminus of KV10.1 and the proline-rich domain of cortactin, regions targeted by many post-translational modifications. This interaction is specific for KV10.1 and does not occur with KV10.2. Cortactin controls the abundance of KV10.1 at the plasma membrane and is required for functional expression of KV10.1 channels. 相似文献
22.
Tzong-Yuan Lin Tobias Werther Jae-Hun Jeoung Holger Dobbek 《The Journal of biological chemistry》2012,287(45):38338-38346
The three-component toluene dioxygenase system consists of an FAD-containing reductase, a Rieske-type [2Fe-2S] ferredoxin, and a Rieske-type dioxygenase. The task of the FAD-containing reductase is to shuttle electrons from NADH to the ferredoxin, a reaction the enzyme has to catalyze in the presence of dioxygen. We investigated the kinetics of the reductase in the reductive and oxidative half-reaction and detected a stable charge transfer complex between the reduced reductase and NAD+ at the end of the reductive half-reaction, which is substantially less reactive toward dioxygen than the reduced reductase in the absence of NAD+. A plausible reason for the low reactivity toward dioxygen is revealed by the crystal structure of the complex between NAD+ and reduced reductase, which shows that the nicotinamide ring and the protein matrix shield the reactive C4a position of the isoalloxazine ring and force the tricycle into an atypical planar conformation, both factors disfavoring the reaction of the reduced flavin with dioxygen. A rapid electron transfer from the charge transfer complex to electron acceptors further reduces the risk of unwanted side reactions, and the crystal structure of a complex between the reductase and its cognate ferredoxin shows a short distance between the electron-donating and -accepting cofactors. Attraction between the two proteins is likely mediated by opposite charges at one large patch of the complex interface. The stability, specificity, and reactivity of the observed charge transfer and electron transfer complexes are thought to prevent the reaction of reductaseTOL with dioxygen and thus present a solution toward conflicting requirements. 相似文献
23.
Kristina Wallenius Tobias Kroon Therese Hagstedt Lars Löfgren Maria Sörhede-Winzell Jeremie Boucher Daniel Lindén Nicholas D. Oakes 《Journal of lipid research》2022,63(3):100176
Sodium-glucose cotransporter 2 (SGLT2) inhibitors have been shown to increase ketone bodies in patients with type 2 diabetes; however, the underlying mechanisms have not been fully elucidated. Here we examined the effect of the SGLT2 inhibitor dapagliflozin (1 mg/kg/day, formulated in a water, PEG400, ethanol, propylene glycol solution, 4 weeks) on lipid metabolism in obese Zucker rats. Fasting FFA metabolism was assessed in the anesthetized state using a [9,10-3H(N)]-palmitic acid tracer by estimating rates of plasma FFA appearance (Ra), whole-body FFA oxidation (Rox), and nonoxidative disposal (Rst). In the liver, clearance (Kβ-ox) and flux (Rβ-ox) of FFA into β-oxidation were estimated using [9,10-3H]-(R)-bromopalmitate/[U-14C]palmitate tracers. As expected, dapagliflozin induced glycosuria and a robust antidiabetic effect; treatment reduced fasting plasma glucose and insulin, lowered glycated hemoglobin, and increased pancreatic insulin content compared with vehicle controls. Dapagliflozin also increased plasma FFA, Ra, Rox, and Rst with enhanced channeling toward oxidation versus storage. In the liver, there was also enhanced channeling of FFA to β-oxidation, with increased Kβ-ox, Rβ-ox and tissue acetyl-CoA, compared with controls. Finally, dapagliflozin increased hepatic HMG-CoA and plasma β-hydroxybutyrate, consistent with a specific enhancement of ketogenesis. Since ketogenesis has not been directly measured, we cannot exclude an additional contribution of impaired ketone body clearance to the ketosis. In conclusion, this study provides evidence that the dapagliflozin-induced increase in plasma ketone bodies is driven by the combined action of FFA mobilization from adipose tissue and diversion of hepatic FFA toward β-oxidation. 相似文献
24.
Isabel Rathmann Mona Frster Melih Yüksel Lucas Horst Gabriela Petrungaro Tobias Bollenbach Berenike Maier 《The ISME journal》2023,17(1):130
Bacterial transformation, a common mechanism of horizontal gene transfer, can speed up adaptive evolution. How its costs and benefits depend on the growth environment is poorly understood. Here, we characterize the distributions of fitness effects (DFE) of transformation in different conditions and test whether they predict in which condition transformation is beneficial. To determine the DFEs, we generate hybrid libraries between the recipient Bacillus subtilis and different donor species and measure the selection coefficient of each hybrid strain. In complex medium, the donor Bacillus vallismortis confers larger fitness effects than the more closely related donor Bacillus spizizenii. For both donors, the DFEs show strong effect beneficial transfers, indicating potential for fast adaptive evolution. While some transfers of B. vallismortis DNA show pleiotropic effects, various transfers are beneficial only under a single growth condition, indicating that the recipient can benefit from a variety of donor genes to adapt to varying growth conditions. We scrutinize the predictive value of the DFEs by laboratory evolution under different growth conditions and show that the DFEs correctly predict the condition at which transformation confers a benefit. We conclude that transformation has a strong potential for speeding up adaptation to varying environments by profiting from a gene pool shared between closely related species.Subject terms: Molecular evolution, Bacterial genetics 相似文献
25.
Stephanie Bonney Doug Kominsky Kelley Brodsky Holger Eltzschig Lori Walker Tobias Eckle 《PloS one》2013,8(8)
Disruption of peripheral circadian rhyme pathways dominantly leads to metabolic disorders. Studies on circadian rhythm proteins in the heart indicated a role for Clock or Per2 in cardiac metabolism. In contrast to Clock−/−, Per2−/− mice have larger infarct sizes with deficient lactate production during myocardial ischemia. To test the hypothesis that cardiac Per2 represents an important regulator of cardiac metabolism during myocardial ischemia, we measured lactate during reperfusion in Per1−/−, Per2−/− or wildtype mice. As lactate measurements in whole blood indicated an exclusive role of Per2 in controlling lactate production during myocardial ischemia, we next performed gene array studies using various ischemia-reperfusion protocols comparing wildtype and Per2−/− mice. Surprisingly, high-throughput gene array analysis revealed dominantly lipid metabolism as the differentially regulated pathway in wildtype mice when compared to Per2−/−. In all ischemia-reperfusion protocols used, the enzyme enoyl-CoA hydratase, which is essential in fatty acid beta-oxidation, was regulated in wildtype animals only. Studies using nuclear magnet resonance imaging (NMRI) confirmed altered fatty acid populations with higher mono-unsaturated fatty acid levels in hearts from Per2−/− mice. Unexpectedly, studies on gene regulation during reperfusion revealed solely pro inflammatory genes as differentially regulated ‘Per2-genes’. Subsequent studies on inflammatory markers showed increasing IL-6 or TNFα levels during reperfusion in Per2−/− mice. In summary, these studies reveal an important role of cardiac Per2 for fatty acid metabolism and inflammation during myocardial ischemia and reperfusion, respectively. 相似文献
26.
Organisms modify their development and function in response to the environment. At the same time, the environment is modified by the activities of the organism. Despite the ubiquity of such dynamical interactions in nature, it remains challenging to develop models that accurately represent them, and that can be fitted using data. These features are desirable when modeling phenomena such as phenotypic plasticity, to generate quantitative predictions of how the system will respond to environmental signals of different magnitude or at different times, for example, during ontogeny. Here, we explain a modeling framework that represents the organism and environment as a single coupled dynamical system in terms of inputs and outputs. Inputs are external signals, and outputs are measurements of the system in time. The framework uses time-series data of inputs and outputs to fit a nonlinear black-box model that allows to predict how the system will respond to novel input signals. The framework has three key properties: it captures the dynamical nature of the organism–environment system, it can be fitted with data, and it can be applied without detailed knowledge of the system. We study phenotypic plasticity using in silico experiments and demonstrate that the framework predicts the response to novel environmental signals. The framework allows us to model plasticity as a dynamical property that changes in time during ontogeny, reflecting the well-known fact that organisms are more or less plastic at different developmental stages. 相似文献
27.
Max A B Haase Jacek Kominek Dana A Opulente Xing-Xing Shen Abigail L LaBella Xiaofan Zhou Jeremy DeVirgilio Amanda Beth Hulfachor Cletus P Kurtzman Antonis Rokas Chris Todd Hittinger 《Genetics》2021,217(2)
Dollo’s law posits that evolutionary losses are irreversible, thereby narrowing the potential paths of evolutionary change. While phenotypic reversals to ancestral states have been observed, little is known about their underlying genetic causes. The genomes of budding yeasts have been shaped by extensive reductive evolution, such as reduced genome sizes and the losses of metabolic capabilities. However, the extent and mechanisms of trait reacquisition after gene loss in yeasts have not been thoroughly studied. Here, through phylogenomic analyses, we reconstructed the evolutionary history of the yeast galactose utilization pathway and observed widespread and repeated losses of the ability to utilize galactose, which occurred concurrently with the losses of GALactose (GAL) utilization genes. Unexpectedly, we detected multiple galactose-utilizing lineages that were deeply embedded within clades that underwent ancient losses of galactose utilization. We show that at least two, and possibly three, lineages reacquired the GAL pathway via yeast-to-yeast horizontal gene transfer. Our results show how trait reacquisition can occur tens of millions of years after an initial loss via horizontal gene transfer from distant relatives. These findings demonstrate that the losses of complex traits and even whole pathways are not always evolutionary dead-ends, highlighting how reversals to ancestral states can occur. 相似文献
28.
Ilka Haase Simone M?rtl Peter K?hler Adelbert Bacher Markus Fischer 《European journal of biochemistry》2003,270(5):1025-1032
Heterologous expression of the putative open reading frame MJ0303 of Methanococcus jannaschii provided a recombinant protein catalysing the formation of the riboflavin precursor, 6,7-dimethyl-8-ribityllumazine, by condensation of 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione and 3,4-dihydroxy-2-butanone 4-phosphate. Steady state kinetic analysis at 37 degrees C and pH 7.0 indicated a catalytic rate of 11 nmol.mg-1.min-1; Km values for 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione and 3,4-dihydroxybutanone 4-phosphate were 12.5 and 52 micro m, respectively. The enzyme sediments at an apparent velocity of about 12 S. Sedimentation equilibrium analysis indicated a molecular mass around 1 MDa but was hampered by nonideal solute behaviour. Negative-stained electron micrographs showed predominantly spherical particles with a diameter of about 150 A. The data suggest that the enzyme from M. jannaschii can form capsids with icosahedral 532 symmetry consisting of 60 subunits. 相似文献
29.
Tobias Kuemmerle Jed O. Kaplan Alexander V. Prishchepov Ilya Rylsky Oleh Chaskovskyy Vladimir S. Tikunov Daniel Müller 《Global Change Biology》2015,21(8):3049-3061
Forests often rebound from deforestation following industrialization and urbanization, but for many regions our understanding of where and when forest transitions happened, and how they affected carbon budgets remains poor. One such region is Eastern Europe, where political and socio‐economic conditions changed drastically over the last three centuries, but forest trends have not yet been analyzed in detail. We present a new assessment of historical forest change in the European part of the former Soviet Union and the legacies of these changes on contemporary carbon stocks. To reconstruct forest area, we homogenized statistics at the provincial level for ad 1700–2010 to identify forest transition years and forest trends. We contrast our reconstruction with the KK11 and HYDE 3.1 land change scenarios, and use all three datasets to drive the LPJ dynamic global vegetation model to calculate carbon stock dynamics. Our results revealed that forest transitions in Eastern Europe occurred predominantly in the early 20th century, substantially later than in Western Europe. We also found marked geographic variation in forest transitions, with some areas characterized by relatively stable or continuously declining forest area. Our data suggest extensive deforestation in European Russia already prior to ad 1700, and even greater deforestation in the 18th and 19th centuries than in the KK11 and HYDE scenarios. Based on our reconstruction, cumulative carbon emissions from deforestation were greater before 1700 (60 Pg C) than thereafter (29 Pg C). Summed over our entire study area, forest transitions led to a modest uptake in carbon over recent decades, with our dataset showing the smallest effect (<5.5 Pg C) and a more heterogeneous pattern of source and sink regions. This suggests substantial sequestration potential in regrowing forests of the region, a trend that may be amplified through ongoing land abandonment, climate change, and CO2 fertilization. 相似文献