首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96887篇
  免费   637篇
  国内免费   815篇
  2023年   30篇
  2022年   61篇
  2021年   132篇
  2020年   80篇
  2019年   93篇
  2018年   11921篇
  2017年   10750篇
  2016年   7600篇
  2015年   888篇
  2014年   546篇
  2013年   551篇
  2012年   4628篇
  2011年   13131篇
  2010年   12196篇
  2009年   8393篇
  2008年   10019篇
  2007年   11567篇
  2006年   442篇
  2005年   685篇
  2004年   1086篇
  2003年   1138篇
  2002年   877篇
  2001年   270篇
  2000年   175篇
  1999年   35篇
  1998年   34篇
  1997年   30篇
  1996年   17篇
  1995年   12篇
  1994年   16篇
  1993年   41篇
  1992年   36篇
  1991年   50篇
  1990年   16篇
  1989年   10篇
  1988年   29篇
  1987年   18篇
  1984年   20篇
  1983年   24篇
  1982年   8篇
  1981年   9篇
  1979年   8篇
  1975年   13篇
  1972年   250篇
  1971年   277篇
  1970年   8篇
  1965年   13篇
  1962年   26篇
  1944年   12篇
  1940年   10篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
891.
In North-western Germany woodland fragmentation has caused a decline in many forest plant species. Hedgerows partly offer a similar environment as forests and have been identified as potential habitats for forest plants in various studies from North America and Western Europe. The objective of this study was to examine whether this applies also to Central Europe and which variables affect the spatial distribution and abundance of forest plant species in hedgerows on a local scale. Three hedgerow networks north of the city of Bremen, Germany, were selected as study areas and divided into totally 515 hedgerow segments. In each segment we recorded all vascular plants and a large number of explanatory variables relating to structure, spatial configuration, environment and management. Averaged across species there was a predominant effect of environmental factors on the occurrence of forest species in the hedgerows, followed by spatial configuration and management. Hedgerow structure was found to be less important. In general, forest species were favored by low nutrient and light availability as well as high connectivity with other hedgerows or forest; they avoided hedgerows with a west-easterly orientation and an adjacent land use in the form of fields or grasslands. Forest species found and not found in hedgerows did not differ in their environmental preferences or life history traits. The number of threatened forest species in the hedgerows, however, was lower than expected with respect to their overall proportion to the total number of forest species in the region.  相似文献   
892.
Summary   Calathea dryadica and Calathea reginae are described, circumscribed and illustrated. These new species are probably endemic to the Atlantic Forest of Rio de Janeiro State in Southeast Brazil and are considered critically endangered because of the restricted geographic area of occurrence, sometimes enclosed by densely urbanised areas.  相似文献   
893.

Background  

Due to the variation and mutation of the races of Pseudoperonospora cubensis, downy mildew has in recent years become the most devastating leaf disease of cucumber worldwide. Novel resistance to downy mildew has been identified in the wild Cucumis species, C. hystrix Chakr. After the successful hybridization between C. hystrix and cultivated cucumber (C. sativus L.), an introgression line (IL5211S) was identified as highly resistant to downy mildew. Nucleotide-binding site and leucine-rich repeat (NBS-LRR) genes are the largest class of disease resistance genes cloned from plant with highly conserved domains, which can be used to facilitate the isolation of candidate genes associated with downy mildew resistance in IL5211S.  相似文献   
894.
Large improvements in biomass and lipid production are required to make massive scale algal biodiesel production an economic reality. The application of the biodiversity strategy to enhance algal biomass as biofuel feedstock is little. The algal diversity was manipulated in this study to investigate the effects of a combination of biodiversity complementarity and a new medium consisting of seawater and agricultural fertilizer on lipid productivity. The algae diverse community includes two strains of Dunaliella salina (Dunaliella salina 19/30 and 19/18) and three species of Nannochloropsis (Nannochloropsis oculata, Nannochloropsis salina, and Nannochloropsis gaditana). The results showed that the most diverse community (5 species) produced an average of sixfold more biomass in the new medium than did the standard f/2 culture medium. The most diverse polyculture had the highest growth rate (1.01 day?1), biomass (1.2 g L?1), and lipid productivity (0.31 g L?1 day?1). The assessment of algal polycultures relative to monocultures is particularly interesting and novel for this biofuel field, and the observations that these polycultures resulted in significant lipid productivity improvements are very useful addition to the biofuel research. The possible mechanism (resource diversity) to explain the synergy in mixed cultures warrants further investigation.  相似文献   
895.
896.
Transmissible spongiform encephalopathies (TSEs) are caused by the accumulation of the abnormal prion protein scrapie (PrPSc). Prion protein aggregation, misfolding, and cytotoxicity in the brain are the major causes of neuronal dysfunction and ultimate neurodegeneration in all TSEs. Parkin, an E3 ubiquitin ligase, has been studied extensively in all major protein misfolding aggregating diseases, especially Parkinson’s disease and Alzheimer’s disease, but the role of parkin in TSEs remains unknown. Here we investigated the role of parkin in a prion disease cell model in which neuroblastoma2a (N2a) cells were treated with prion peptide PrP106–126. We observed a gradual decrease in the soluble parkin level upon treatment with PrP106–126 in a time-dependent manner. Furthermore, endogenous parkin colocalized with FITC-tagged prion fragment106–126. Overexpression of parkin in N2a cells via transfection repressed apoptosis by enhancing autophagy. Parkin-overexpressing cells also showed reductions in apoptotic BAX translocation to the mitochondria and cytochrome c release to the cytosol, which ultimately inhibited activation of proapoptotic caspases. Taken together, our findings reveal a parkin-mediated cytoprotective mechanism against PrP106–126 toxicity, which is a novel potential therapeutic target for treating prion diseases.  相似文献   
897.
Deciduous forests may respond differently from coniferous forests to the anthropogenic deposition of nitrogen (N). Since fungi, especially ectomycorrhizal (EM) fungi, are known to be negatively affected by N deposition, the effects of N deposition on the soil microbial community, total fungal biomass and mycelial growth of EM fungi were studied in oak-dominated deciduous forests along a nitrogen deposition gradient in southern Sweden. In-growth mesh bags were used to estimate the production of mycelia by EM fungi in 19 oak stands in the N deposition gradient, and the results were compared with nitrate leaching data obtained previously. Soil samples from 154 oak forest sites were analysed regarding the content of phospholipid fatty acids (PLFAs). Thirty PLFAs associated with microbes were analysed and the PLFA 18:2ω6,9 was used as an indicator to estimate the total fungal biomass. Higher N deposition (20 kg N ha−1 y−1 compared with 10 kg N ha−1 y−1) tended to reduce EM mycelial growth. The total soil fungal biomass was not affected by N deposition or soil pH, while the PLFA 16:1ω5, a biomarker for arbuscular mycorrhizal (AM) fungi, was negatively affected by N deposition, but also positively correlated to soil pH. Other PLFAs positively affected by soil pH were, e.g., i14:0, a15:0, 16:1ω9, a17:0 and 18:1ω7, while some were negatively affected by pH, such as i15:0, 16:1ω7t, 10Me17:0 and cy19:0. In addition, N deposition had an effect on the PLFAs 16:1ω7c and 16:1ω9 (negatively) and cy19:0 (positively). The production of EM mycelia is probably more sensitive to N deposition than total fungal biomass according to the fungal biomarker PLFA 18:2ω6,9. Low amounts of EM mycelia covaried with increased nitrate leaching, suggesting that EM mycelia possibly play an important role in forest soil N retention at increased N input.  相似文献   
898.
A synopsis of the annual genus Poteranthera is presented here. Three species are recognized including the newly described Poteranthera windischii. Poteranthera is characterized by its annual life cycle, generally linear leaves that have conspicuous gland-tipped hairs on the lamina margin, 5-merous flowers with a constriction at the level of the torus, one cycle of stamens reduced to staminodia or absent altogether, three locular ovary, and reniform seeds with a foveolate testa. The flowers of the new species P. windischii are strongly heterandrous, where the usual set of stamens that bees harvest pollen from is reduced to staminodia and the stamen set that deposits pollen on the bee has large yellow ventral appendages that possibly function as pollen mimics and result in deceit pollination. This hypothesis is supported by experiments that have demonstrated innate preferences of female bees for yellow, UV absorbing colors in flowers. Species of Poteranthera are extremely rare, known from very few specimens and possibly highly endangered.  相似文献   
899.
Post-translational modification of proteins by lysine acetylation plays important regulatory roles in living cells. The budding yeast Saccharomyces cerevisiae is a widely used unicellular eukaryotic model organism in biomedical research. S. cerevisiae contains several evolutionary conserved lysine acetyltransferases and deacetylases. However, only a few dozen acetylation sites in S. cerevisiae are known, presenting a major obstacle for further understanding the regulatory roles of acetylation in this organism. Here we use high resolution mass spectrometry to identify about 4000 lysine acetylation sites in S. cerevisiae. Acetylated proteins are implicated in the regulation of diverse cytoplasmic and nuclear processes including chromatin organization, mitochondrial metabolism, and protein synthesis. Bioinformatic analysis of yeast acetylation sites shows that acetylated lysines are significantly more conserved compared with nonacetylated lysines. A large fraction of the conserved acetylation sites are present on proteins involved in cellular metabolism, protein synthesis, and protein folding. Furthermore, quantification of the Rpd3-regulated acetylation sites identified several previously known, as well as new putative substrates of this deacetylase. Rpd3 deficiency increased acetylation of the SAGA (Spt-Ada-Gcn5-Acetyltransferase) complex subunit Sgf73 on K33. This acetylation site is located within a critical regulatory domain in Sgf73 that interacts with Ubp8 and is involved in the activation of the Ubp8-containing histone H2B deubiquitylase complex. Our data provides the first global survey of acetylation in budding yeast, and suggests a wide-ranging regulatory scope of this modification. The provided dataset may serve as an important resource for the functional analysis of lysine acetylation in eukaryotes.Lysine acetylation is a dynamic and reversible post-translational modification. Acetylation of lysines on their ε-amino group is catalyzed by lysine acetyltransferases (KATs1, also known as histone acetyltrasferases (HATs)), and reversed by lysine deacetylases (KDACs, also known as histone deacetylases (HDACs)) (1). The enzymatic machinery involved in lysine acetylation is evolutionary conserved in all forms of life (24). The role of acetylation has been extensively studied in the regulation of gene expression via modification of histones (5). Acetylation also plays important roles in controlling cellular metabolism (610), protein folding (11), and sister chromatid cohesion (12). Furthermore, acetylation has been implicated in regulating the beneficial effects of calorie restriction (13), a low nutrient diet without starvation, and aging. Based on these findings, it is proposed that the functional roles of acetylation in these processes are evolutionary conserved from yeast to mammals.Advancements in mass spectrometry (MS)-based proteomics have greatly facilitated identification of thousands of post-translational modification (PTM) sites in eukaryotic cells (1418). Proteome-wide mapping of PTM sites can provide important leads for analyzing the functional relevance of individual sites and a systems-wide view of the regulatory scope of post-translational modifications. Also, large-scale PTM datasets are an important resource for the in silico analysis of PTMs, which can broaden the understanding of modification site properties and their evolutionary trajectories.The budding yeast Saccharomyces cerevisiae is a commonly used unicellular eukaryotic model organism. Yeast has been used in many pioneering “-omics” studies, including sequencing of the first eukaryotic genome (19), systems-wide genetic interactions analysis (20, 21), MS-based comprehensive mapping of a eukaryotic proteome (22), and proteome-wide analysis of protein-protein interactions (23, 24). In addition, S. cerevisiae has been extensively used to study the molecular mechanisms of acetylation. Many lysine acetyltransferases and deacetylases were discovered in this organism (2, 25), and their orthologs were subsequently identified in higher eukaryotes. Furthermore, the functional roles of many well-studied acetylation sites on histones are conserved from yeast to mammals. Recent data from human and Drosophila cells show that acetylation is present on many highly conserved metabolic enzymes (2628). However, only a few dozen yeast acetylation sites are annotated in the Uniprot database. Given the presence of a well-conserved and elaborate acetylation machinery in yeast, we reasoned that many more acetylation sites exist in this organism that remained to be identified.Here we used high resolution mass spectrometry-based proteomics to investigate the scope of acetylation in S. cerevisiae. We identified about 4000 unique acetylation sites in this important model organism. Bioinformatic analysis of yeast acetylation sites and comparison with previously identified human and Drosophila acetylation sites indicates that many acetylation sites are evolutionary conserved. Furthermore, quantitative analysis of the Rpd3-regulated acetylation sites identified several nuclear proteins that showed increased acetylation in rpd3 knockout cells. Our results provide a systems-wide view of acetylation in budding yeast, and a rich dataset for functional analysis of acetylation sites in this organism.  相似文献   
900.
Targeted drug delivery systems for cancer improves anti-tumor efficacy and reduces systemic toxicity by restricting availability of cytotoxic drugs within tumors. Targeting moieties, such as natural ligands (folic acid, transferrin, and biotin) which are overexpressed on tumors, have been used to enhance liposome-encapsulated drug accumulation within tumors and resulted in better control. In this report, we explored the scope of targeting ligand folic acid, which is incorporated in liposome systems using folic acid-modified cholesterol (CPF), enabled highly selective tumor-targeted delivery of liposome-encapsulated doxorubicin and resulted in increased cytotoxicity within tumors. Folate-tagged poloxamer-coated liposomes (FDL) were found to have significantly higher cellular uptake than conventional poloxamer-coated liposomes (DL), as confirmed by fluorometric analysis in B16F10 melanoma cells. Biodistribution study of the radiolabeled liposomal system indicated the significantly higher tumor uptake of FDL as compared to DL. Anti-tumor activity of FDL against murine B16F10 melanoma tumor-bearing mice revealed that FDL inhibited tumor growth more efficiently than the DL. Taken together, the results demonstrated the significant potential of the folate-conjugated nanoliposomal system for drug delivery to tumors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号