首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113篇
  免费   11篇
  2024年   1篇
  2023年   2篇
  2022年   1篇
  2021年   3篇
  2020年   3篇
  2019年   6篇
  2017年   2篇
  2016年   3篇
  2015年   11篇
  2014年   8篇
  2013年   5篇
  2012年   10篇
  2011年   10篇
  2009年   9篇
  2008年   11篇
  2007年   5篇
  2006年   2篇
  2005年   2篇
  2004年   3篇
  2003年   4篇
  2001年   2篇
  2000年   2篇
  1997年   2篇
  1994年   1篇
  1992年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
  1981年   3篇
  1977年   1篇
排序方式: 共有124条查询结果,搜索用时 31 毫秒
21.
Arterial pulsations are known to modulate muscle spindle firing; however, the physiological significance of such synchronised modulation has not been investigated. Unitary recordings were made from 75 human muscle spindle afferents innervating the pretibial muscles. The modulation of muscle spindle discharge by arterial pulsations was evaluated by R-wave triggered averaging and power spectral analysis. We describe various effects arterial pulsations may have on muscle spindle afferent discharge. Afferents could be "driven" by arterial pulsations, e.g., showing no other spontaneous activity than spikes generated with cardiac rhythmicity. Among afferents showing ongoing discharge that was not primarily related to cardiac rhythmicity we illustrate several mechanisms by which individual spikes may become phase-locked. However, in the majority of afferents the discharge rate was modulated by the pulse wave without spikes being phase locked. Then we assessed whether these influences changed in two physiological conditions in which a sustained increase in muscle sympathetic nerve activity was observed without activation of fusimotor neurones: a maximal inspiratory breath-hold, which causes a fall in systolic pressure, and acute muscle pain, which causes an increase in systolic pressure. The majority of primary muscle spindle afferents displayed pulse-wave modulation, but neither apnoea nor pain had any significant effect on the strength of this modulation, suggesting that the physiological noise injected by the arterial pulsations is robust and relatively insensitive to fluctuations in blood pressure. Within the afferent population there was a similar number of muscle spindles that were inhibited and that were excited by the arterial pulse wave, indicating that after signal integration at the population level, arterial pulsations of opposite polarity would cancel each other out. We speculate that with close-to-threshold stimuli the arterial pulsations may serve as an endogenous noise source that may synchronise the sporadic discharge within the afferent population and thus facilitate the detection of weak stimuli.  相似文献   
22.

Background

Recent elevated winter loss of honey bee colonies is a major concern. The presence of the mite Varroa destructor in colonies places an important pressure on bee health. V. destructor shortens the lifespan of individual bees, while long lifespan during winter is a primary requirement to survive until the next spring. We investigated in two subsequent years the effects of different levels of V. destructor infestation during the transition from short-lived summer bees to long-lived winter bees on the lifespan of individual bees and the survival of bee colonies during winter. Colonies treated earlier in the season to reduce V. destructor infestation during the development of winter bees were expected to have longer bee lifespan and higher colony survival after winter.

Methodology/Principal Findings

Mite infestation was reduced using acaricide treatments during different months (July, August, September, or not treated). We found that the number of capped brood cells decreased drastically between August and November, while at the same time, the lifespan of the bees (marked cohorts) increased indicating the transition to winter bees. Low V. destructor infestation levels before and during the transition to winter bees resulted in an increase in lifespan of bees and higher colony survival compared to colonies that were not treated and that had higher infestation levels. A variety of stress-related factors could have contributed to the variation in longevity and winter survival that we found between years.

Conclusions/Significance

This study contributes to theory about the multiple causes for the recent elevated colony losses in honey bees. Our study shows the correlation between long lifespan of winter bees and colony loss in spring. Moreover, we show that colonies treated earlier in the season had reduced V. destructor infestation during the development of winter bees resulting in longer bee lifespan and higher colony survival after winter.  相似文献   
23.

Background

Activation of the Toll-like receptor (TLR) signaling pathway through TLR4 may be important in the induction of protective immunity against Bordetella pertussis with TLR4-mediated activation of dendritic and B cells, induction of cytokine expression, and reversal of tolerance as crucial steps. We examined whether single nucleotide polymorphisms (SNPs) in genes of the TLR4 pathway and their interaction are associated with the response to whole-cell vaccine (WCV) pertussis vaccination in 490 one-year-old children.

Methodology/Principal Findings

We analyzed associations of 75 haplotype-tagging SNPs in genes in the TLR4 signaling pathway with pertussis toxin (PT)-IgG titers. We found significant associations between the PT-IgG titer and SNPs in CD14, TLR4, TOLLIP, TIRAP, IRAK3, IRAK4, TICAM1, and TNFRSF4 in one or more of the analyses. The strongest evidence for association was found for two SNPs (rs5744034 and rs5743894) in TOLLIP that were almost completely in linkage disequilibrium, provided statistically significant associations in all tests with the lowest p-values, and displayed a dominant mode of inheritance. However, none of these single gene associations would withstand correction for multiple testing. In addition, Multifactor Dimensionality Reduction Analysis, an approach that does not need correction for multiple testing, showed significant and strong two and three locus interactions between SNPs in TOLLIP (rs4963060), TLR4 (rs6478317) and IRAK1 (rs1059703).

Conclusions/Significance

We have identified significant interactions between genes in the TLR pathway in the induction of vaccine-induced immunity. These interactions underline that these genes are functionally related and together form a true biological relationship in a protein-protein interaction network. Practically all our findings may be explained by genetic variation in directly or indirectly interacting proteins at the extra- and intracytoplasmic sites of the cell membrane of antigen-presenting cells, B cells, or both. Fine tuning of interacting proteins in the TLR pathway appears important for the induction of an optimal vaccine response.  相似文献   
24.

Background and Aims

The plastic alterations of clonal architecture are likely to have functional consequences, as they affect the spatial distribution of ramets over patchy environments. However, little is known about the effect of mechanical stresses on the clonal growth. The aim of the present study was to investigate the clonal plasticity induced by mechanical stress consisting of continuous water current encountered by aquatic plants. More particularly, the aim was to test the capacity of the plants to escape this stress through clonal plastic responses.

Methods

The transplantation of ramets of the same clone in two contrasting flow velocity conditions was carried out for two species (Potamogeton coloratus and Mentha aquatica) which have contrasting clonal growth forms. Relative allocation to clonal growth, to creeping stems in the clonal biomass, number and total length of creeping stems, spacer length and main creeping stem direction were measured.

Key Results

For P. coloratus, plants exposed to water current displayed increased total length of creeping stems, increased relative allocation to creeping stems within the clonal dry mass and increased spacer length. For M. aquatica, plants exposed to current displayed increased number and total length of creeping stems. Exposure to current induced for both species a significant increase of the proportion of creeping stems in the downstream direction to the detriment of creeping stems perpendicular to flow.

Conclusions

This study demonstrates that mechanical stress from current flow induced plastic variation in clonal traits for both species. The responses of P. coloratus could lead to an escape strategy, with low benefits with respect to sheltering and anchorage. The responses of M. aquatica that may result in a denser canopy and enhancement of anchorage efficiency could lead to a resistance strategy.Key words: Phenotypic plasticity, morphology, submerged aquatic vegetation, clonality, clonal architecture, Potamogeton coloratus, Mentha aquatica, escape, resistance, mechanical stress, thigmomorphogenesis  相似文献   
25.
Endogenous biological clocks allow organisms to anticipate daily environmental cycles. The ability to achieve time-place associations is key to the survival and reproductive success of animals. The ability to link the location of a stimulus (usually food) with time of day has been coined time-place learning, but its circadian nature was only shown in honeybees and birds. So far, an unambiguous circadian time-place-learning paradigm for mammals is lacking. We studied whether expression of the clock gene Cryptochrome (Cry), crucial for circadian timing, is a prerequisite for time-place learning. Time-place learning in mice was achieved by developing a novel paradigm in which food reward at specific times of day was counterbalanced by the penalty of receiving a mild footshock. Mice lacking the core clock genes Cry1 and Cry2 (Cry double knockout mice; Cry1(-/-)Cry2(-/-)) learned to avoid unpleasant sensory experiences (mild footshock) and could locate a food reward in a spatial learning task (place preference). These mice failed, however, to learn time-place associations. This specific learning and memory deficit shows that a Cry-gene dependent circadian timing system underlies the utilization of time of day information. These results reveal a new functional role of the mammalian circadian timing system.  相似文献   
26.
Cold-water coral mounds on both margins of the Rockall Trough (NE Atlantic Ocean) have a strongly different morphology. Single, isolated mounds occur on the SE margin and are mainly found on the upper slope between 900 and 650 m water depth, while large mound clusters are found on the SW margin in water depths between 600 and 1,000 m, in a narrow zone almost parallel to the slope. Sedimentation rates on the mounds are higher than on the surrounding seabed as a result of baffling of biogenic carbonate debris and siliciclastic particles by the coral framework covering the mounds. This is confirmed by 210Pb measurements. The individual coral growth rate can be three times higher then the vertical growth rate of the coral cover (±10 mm year−1) which in turn is more than an order of magnitude higher then the present-day overall mound growth rate (±0.25 mm year−1). The presence of extensive hardgrounds and firmgrounds and the three-dimensional coral framework are considered to be responsible for the stability of the relatively steep slopes of the mounds. High current velocities in the intramound areas result in local non-sedimentation and erosion, as is shown by the presence of IRD (ice-rafted debris) lag deposits on the seabed and moats around some of the mounds. The morphology and sedimentology of cold-water coral-covered (mainly Lophelia pertusa and Madrepora oculata) mounds on the southern Rockall Trough margins (NE Atlantic Ocean) is discussed and a model describing the development of these mounds is presented.  相似文献   
27.
28.
Seagrasses are well known ecosystem engineers that can significantly influence local hydrodynamics and the abundance and biodiversity of macrobenthic organisms. This study focuses on the potential role of the seagrass canopy structure in altering the abundance of filter-feeding organisms by modifying the hydrodynamic driven food supply. We quantified the effect of two ecosystem engineers with contrasting canopy properties (i.e. Zostera noltii and Cymodocea nodosa) on the food intake rate of a suspension-feeding bivalve Cerastoderma edule living in these seagrass meadows. Field experiments were carried out in two seagrass beds (Z. noltii and C. nodosa) and bare sediment, located on sandflat characterised by a relatively high hydrodynamic energy from waves and currents. Results demonstrated that the filter-feeding rate was almost twofold increased when C. edule was inhabiting Z. noltii meadows (1.10 ± 0.24 μg Chl g Fresh Weight−1) when compared to cockles living on the bare sediment (0.65 ± 0.14 μg Chl g FW−1). Intermediate values were found within C. nodosa canopy (0.97 ± 0.24 μg Chl g FW−1), but filter feeding rate showed no significant differences with values for Z. noltii meadows. There were no apparent correlations between canopy properties and filter-feeding rates. Our results imply that food refreshment within the seagrass canopies was enough to avoid food depletion. We therefore expect that the ameliorated environmental conditions within vegetated areas (i.e. lower hydrodynamic conditions, higher sediment stability, lower predation pressure…) in combination with sufficient food supply to prevent depletion within both canopies are the main factors underlying our observations.  相似文献   
29.

Background

Glioblastoma multiforme (GBM) cells secrete large amounts of glutamate that can trigger AMPA-type glutamate receptors (AMPARs). This commonly results in Na+ and Ca2+-permeability and thereby in excitotoxic cell death of the surrounding neurons. Here we investigated how the GBM cells themselves survive in a glutamate-rich environment.

Methods and Findings

In silico analysis of published reports shows down-regulation of all ionotropic glutamate receptors in GBM as compared to normal brain. In vitro, in all GBM samples tested, mRNA expression of AMPAR subunit GluR1, 2 and 4 was relatively low compared to adult and fetal total brain mRNA and adult cerebellum mRNA. These findings were in line with primary GBM samples, in which protein expression patterns were down-regulated as compared to the normal tissue. Furthermore, mislocalized expression of these receptors was found. Sequence analysis of GluR2 RNA in primary and established GBM cell lines showed that the GluR2 subunit was found to be partly unedited.

Conclusions

Together with the lack of functional effect of AMPAR inhibition by NBQX our results suggest that down-regulation and afunctionality of AMPARs, enable GBM cells to survive in a high glutamate environment without going into excitotoxic cell death themselves. It can be speculated that specific AMPA receptor inhibitors may protect normal neurons against the high glutamate microenvironment of GBM tumors.  相似文献   
30.
Integrating ecosystem engineering and food webs   总被引:1,自引:0,他引:1  
Ecosystem engineering, the physical modification of the environment by organisms, is a common and often influential process whose significance to food web structure and dynamics is largely unknown. In the light of recent calls to expand food web studies to include non‐trophic interactions, we explore how we might best integrate ecosystem engineering and food webs. We provide rationales justifying their integration and present a provisional framework identifying how ecosystem engineering can affect the nodes and links of food webs and overall organization; how trophic interactions with the engineer can affect the engineering; and how feedbacks between engineering and trophic interactions can affect food web structure and dynamics. We use a simple integrative food chain model to illustrate how feedbacks between the engineer and the food web can alter 1) engineering effects on food web dynamics, and 2) food web responses to extrinsic environmental perturbations. We identify four general challenges to integration that we argue can readily be met, and call for studies that can achieve this integration and help pave the way to a more general understanding of interaction webs in nature. Synthesis All species are affected by their physical environment. Because ecosystem engineering species modify the physical environment and belong to food webs, such species are potentially one of the most important bridges between the trophic and non‐trophic. We examine how to integrate the so far, largely independent research areas of ecosystem engineering and food webs. We present a conceptual framework for understanding how engineering can affect food webs and vice versa, and how feedbacks between the two alter ecosystem dynamics. With appropriate empirical studies and models, integration is achievable, paving the way to a more general understanding of interaction webs in nature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号