首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   4篇
  2017年   1篇
  2016年   3篇
  2015年   4篇
  2014年   3篇
  2013年   5篇
  2011年   1篇
  2010年   3篇
  2009年   3篇
  2008年   5篇
  2007年   5篇
  2005年   2篇
  2004年   4篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1995年   1篇
  1992年   3篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1979年   1篇
  1976年   1篇
排序方式: 共有62条查询结果,搜索用时 15 毫秒
21.

Background

Molecular genetic studies on rare tumour entities, such as bone tumours, often require the use of decalcified, formalin-fixed, paraffin-embedded tissue (dFFPE) samples. Regardless of which decalcification procedure is used, this introduces a vast breakdown of DNA that precludes the possibility of further molecular genetic testing. We set out to establish a robust protocol that would overcome these intrinsic hurdles for bone tumour research.

Findings

The goal of our study was to establish a protocol, using a modified DNA isolation procedure and quality controls, to select decalcified samples suitable for array-CGH testing. Archival paraffin blocks were obtained from 9 different pathology departments throughout Europe, using different fixation, embedding and decalcification procedures, in order to preclude a bias for certain lab protocols. Isolated DNA samples were subjected to direct chemical labelling and enzymatic labelling systems and were hybridised on a high resolution oligonucleotide chip containing 44,000 reporter elements. Genomic alterations (gains and losses) were readily detected in most of the samples analysed. For example, both homozygous deletions of 0.6 Mb and high level of amplifications of 0.7 Mb were identified.

Conclusions

We established a robust protocol for molecular genetic testing of dFFPE derived DNA, irrespective of fixation, decalcification or sample type used. This approach may greatly facilitate further genetic testing on rare tumour entities where archival decalcified, formalin fixed samples are the only source.  相似文献   
22.
23.
The chemokine CXCL12 (or SDF-1) and its receptor CXCR4 have originally been described as regulators of cell interactions in the immune system. However, over the past years it has become clear that this receptor/ligand pair is an important component of the machinery that controls cell migration in different regions of the developing nervous system. Here we will review some of these functions of the CXCL12/CXCR4 system, focusing on migration events in the cerebellum and the cortex. Furthermore, we will discuss these findings in light of the recently discovered second receptor for CXCL12, CXCR7, and the original functional properties of this molecule that have been described in zebrafish.  相似文献   
24.
25.
26.
In vitro enzymatic assays have shown that an enzyme with typical xanthine dehydrogenase (XDH) activities and electrophoretic mobility slightly different from that of Drosophila XDH is present in Calliphora tissues. A Calliphora genomic sequence has been isolated by low-stringency hybridization to the Drosophila rosy gene (XDH), and partially sequenced. This sequence has been shown to be unique, polymorphic, and it maps on chromosome I. Sequence comparisons provide compelling evidence that it belongs to the XDH gene of Calliphora. Interspecies transformation experiments, aimed at investigating functional as well as structural divergence of the XDH genes of Calliphora and Drosophila, are now possible.  相似文献   
27.
There is an intimate relationship between nutritional intake (eating) and serotonin activity. Experimental manipulations (mainly neuropharmacological) of serotonin influence the pattern of eating behavior, subjective feelings of appetite motivation, and the response to nutritional challenges. Similarly, nutritional manipulations (food restriction, dieting, or altered nutrient supply) change the sensitivity of the serotonin network. Traditionally, serotonin has been linked to the macronutrient carbohydrate via the intermediary step of plasma amino acid ratios. However, it has also been demonstrated that 5-HT drugs will reduce energy intake and reverse body weight gain in rats exposed to weight increasing high fat diets. 5-HT drugs can also reduce food intake and block weight gain of rats on a high fat cafeteria diet. Some diet selection studies in rats indicate that the most prominent reduction of macronutrient intake is for fat. These data indicate that 5-HT activity can bring about a reduction in fat consumption. In turn, different types of dietary fat can alter brain 5-HT activity. In human studies the methodology of food choice experiments has often precluded the detection of an effect of 5-HT manipulation on fat intake. However, there is evidence that in obese and lean subjects some 5-HT drugs can readily reduce the intake of high fat foods. Data also suggest that 5-HT activation can lead to a selective avoidance of fat in the diet. These effects of 5-HT on the intake of dietary fat may involve a pre-absorptive mechanism and there is evidence that 5-HT is linked to cholecystokinin and enterostatin. These proposals have theoretical and practical implications and suggest possible strategies to intensify or advance fat-induced satiety signals.  相似文献   
28.

Background  

Enteroaggregative Escherichia coli (EAEC) are enteropathogenic strains identified by the aggregative adhesion (AA) pattern that share the capability to form biofilms. Citrobacter freundii is classically considered as an indigenous intestinal species that is sporadically associated with diarrhea.  相似文献   
29.
30.
Functional gene analysis in vivo represents still a major challenge in biomedical research. Here we present a new method for the efficient introduction of nucleic acids into the postnatal mouse forebrain. We show that intraventricular injection of DNA followed by electroporation induces strong expression of transgenes in radial glia, neuronal precursors and neurons of the olfactory system. We present two proof-of-principle experiments to validate our approach. First, we show that expression of a human isoform of the neural cell adhesion molecule (hNCAM-140) in radial glia cells induces their differentiation into cells showing a neural precursor phenotype. Second, we demonstrate that p21 acts as a cell cycle inhibitor for postnatal neural stem cells. This approach will represent an important tool for future studies of postnatal neurogenesis and of neural development in general.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号