首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1555篇
  免费   117篇
  国内免费   2篇
  1674篇
  2023年   8篇
  2022年   21篇
  2021年   42篇
  2020年   25篇
  2019年   23篇
  2018年   43篇
  2017年   29篇
  2016年   53篇
  2015年   109篇
  2014年   98篇
  2013年   111篇
  2012年   185篇
  2011年   143篇
  2010年   92篇
  2009年   63篇
  2008年   105篇
  2007年   99篇
  2006年   85篇
  2005年   67篇
  2004年   65篇
  2003年   59篇
  2002年   41篇
  2001年   6篇
  2000年   7篇
  1999年   9篇
  1998年   10篇
  1997年   7篇
  1996年   4篇
  1995年   9篇
  1994年   9篇
  1993年   6篇
  1992年   2篇
  1991年   4篇
  1989年   2篇
  1988年   5篇
  1986年   5篇
  1984年   2篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1975年   1篇
  1974年   1篇
  1973年   3篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1965年   1篇
  1915年   1篇
排序方式: 共有1674条查询结果,搜索用时 13 毫秒
111.
The master circadian pacemaker emits signals that trigger organ-specific oscillators and, therefore, constitutes a basic biological process that enables organisms to anticipate daily environmental changes by adjusting behavior, physiology, and gene regulation. Although circadian rhythms are well characterized on a physiological level, little is known about circadian modulations of higher cognitive functions. Thus, we investigated circadian repercussions on language performance at the level of minimal syntactic processing by means of German noun phrases in ten young healthy men under the unmasking conditions of a 40 h constant-routine protocol. Language performance for both congruent and incongruent noun phrases displayed a clear diurnal rhythm with a peak performance decrement during the biological night. The nadirs, however, differed such that worst syntactic processing of incongruent noun phrases occurred 3 h earlier (07:00 h) than that of congruent noun phrases (10:00 h). Our results indicate that language performance displays an internally generated circadian rhythmicity with optimal time for parsing language between 3 to 6 h after the habitual wake time, which usually corresponds to 10:00–13:00 h. These results may have important ramifications for establishing optimal times for shiftwork changes or testing linguistically impaired people.  相似文献   
112.
The growing importance of biocatalysis in the syntheses of enantiopure molecules results from the benefits of enzymes regarding selectivity and specificity of the reaction and ecological issues of the process. Ene‐reductases (ERs) from the old yellow enzyme family have received much attention in the last years. These flavo‐enzymes catalyze the trans‐specific reduction of activated C?C bonds, which is an important reaction in asymmetric synthesis, because up to two stereogenic centers can be created in one reaction. However, limitations of ERs described in the literature such as their moderate catalytic activity and their strong preference for NADPH promote the search for novel ERs with improved properties. In this study, we characterized nine novel ERs from cyanobacterial strains belonging to different taxonomic orders and habitats. ERs were identified with activities towards a broad spectrum of alkenes. The reduction of maleimide was catalyzed with activities of up to 35.5 U mg?1 using NADPH. Ketoisophorone and (R)‐carvone, which were converted to the highly valuable compounds (R)‐levodione and (2R,5R)‐dihydrocarvone, were reduced with reaction rates of up to 2.2 U mg?1 with NADPH. In contrast to other homologous ERs from the literature, NADH was accepted at moderate to high rates as well: Enzyme activities of up to 16.7 U mg?1 were obtained for maleimide and up to 1.3 U mg?1 for ketoisophorone and (R)‐carvone. Additionally, excellent stereoselectivities were achieved in the reduction of (R)‐carvone (97–99% de). In particular, AnabaenaER3 from Anabaena variabilis ATCC 29413 and AcaryoER1 from Acaryochloris marina MBIC 11017 were identified as useful biocatalysts. Therefore, novel ERs from cyanobacteria with high catalytic efficiency were added to the toolbox for the asymmetric reduction of alkenes. Biotechnol. Bioeng. 2013; 110: 1293–1301. © 2012 Wiley Periodicals, Inc.  相似文献   
113.
Metabolomics studies now approach large sample sizes and the health characterization of the study population often include complete blood count (CBC) results. Upon careful interpretation the CBC aids diagnosis and provides insight into the health status of the patient within a clinical setting. Uncovering metabolic signatures associated with parameters of the CBC in apparently healthy individuals may facilitate interpretation of metabolomics studies in general and related to diseases. For this purpose 879 subjects from the population‐based Study of Health in Pomerania (SHIP)‐TREND were included. Using metabolomics data resulting from mass‐spectrometry based measurements in plasma samples associations of specific CBC parameters with metabolites were determined by linear regression models. In total, 118 metabolites significantly associated with at least one of the CBC parameters. Strongest associations were observed with metabolites of heme degradation and energy production/consumption. Inverse association seen with mean corpuscular volume and mean corpuscular haemoglobin comprised metabolites potentially related to kidney function. The presently identified metabolic signatures are likely derived from the general function and formation/elimination of blood cells. The wealth of associated metabolites strongly argues to consider CBC in the interpretation of metabolomics studies, in particular if mutual effects on those parameters by the disease of interest are known.  相似文献   
114.
Structural and functional evolution of the P2Y12-like receptor group   总被引:1,自引:0,他引:1  
Metabotropic pyrimidine and purine nucleotide receptors (P2Y receptors) belong to the superfamily of G protein-coupled receptors (GPCR). They are distinguishable from adenosine receptors (P1) as they bind adenine and/or uracil nucleotide triphosphates or diphosphates depending on the subtype. Over the past decade, P2Y receptors have been cloned from a variety of tissues and species, and as many as eight functional subtypes have been characterized. Most recently, several members of the P2Y12-like receptor group, which includes the clopidogrel-sensitive ADP receptor P2Y12, have been deorphanized. The P2Y12-like receptor group comprises several structurally related GPCR which, however, display heterogeneous agonist specificity including nucleotides, their derivatives, and lipids. Besides the established function of P2Y12 in platelet activation, expression in macrophages, neuronal and glial cells as well as recent results from functional studies implicate that several members of this group may have specific functions in neurotransmission, inflammation, chemotaxis, and response to tissue injury. This review focuses specifically on the structure-function relation and shortly summarizes some aspects of the physiological relevance of P2Y12-like receptor members.  相似文献   
115.
Hereditary degeneration of photoreceptors has been linked to over-activation of Ca2+-permeable channels, excessive Ca2+-influx, and downstream activation of Ca2+-dependent calpain-type proteases. Unfortunately, after more than 20 years of pertinent research, unequivocal evidence proving significant and reproducible photoreceptor protection with Ca2+-channel blockers is still lacking. Here, we show that both D- and L-cis enantiomers of the anti-hypertensive drug diltiazem were very effective at blocking photoreceptor Ca2+-influx, most probably by blocking the pore of Ca2+-permeable channels. Yet, unexpectedly, this block neither reduced the activity of calpain-type proteases, nor did it result in photoreceptor protection. Remarkably, application of the L-cis enantiomer of diltiazem even led to a strong increase in photoreceptor cell death. These findings shed doubt on the previously proposed links between Ca2+ and retinal degeneration and are highly relevant for future therapy development as they may serve to refocus research efforts towards alternative, Ca2+-independent degenerative mechanisms.Subject terms: Cell death in the nervous system, Ion channels in the nervous system, Molecular neuroscience  相似文献   
116.
117.
Zhang D  Zaugg K  Mak TW  Elledge SJ 《Cell》2006,126(3):529-542
The Chk2-p53-PUMA pathway is a major regulator of DNA-damage-induced apoptosis in response to double-strand breaks in vivo. Through analysis of 53BP1 complexes we have discovered a new ubiquitin protease, USP28, which regulates this pathway. Using a human cell line that faithfully recapitulated the Chk2-p53-PUMA pathway, we show that USP28 is required to stabilize Chk2 and 53BP1 in response to DNA damage. In this cell line, both USP28 and Chk2 are required for DNA-damage-induced apoptosis, and they accomplish this in part through regulation of the p53 induction of proapoptotic genes like PUMA. Our studies implicate DNA-damage-induced ubiquitination and deubiquitination as a major regulator of the DNA-damage response for Chk2, 53BP1, and a number of other proteins in the DNA-damage checkpoint pathway, including several mediators, such as Mdc1, Claspin, and TopBP1.  相似文献   
118.
To assess the efficiency of two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) and of two-dimensional electrophoresis and ammoniacal silver staining (2D-E), different amounts of soybean trypsin inhibitor and horse myoglobin were added to amniotic fluid. In this model, a minimum of 5 to 10 ng of "artificial" biomarkers was detected.  相似文献   
119.
In recent years, the importance of the Gram-negative bacterium Stenotrophomonas as an opportunistic pathogen as well as in biotechnology has increased. The aim of the present study was to develop new methods for distinguishing between strains closely related to the potentially human pathogenic Stenotrophomonas maltophilia and those closely related to the plant-associated Stenotrophomonas rhizophila. To accomplish this, 58 strains were characterized by 16S rDNA sequencing and amplified ribosomal DNA restriction analysis (ARDRA), and the occurrence of specific functional genes. Based on 16S rDNA sequences, an ARDRA protocol was developed which allowed differentiation between strains of the S. maltophilia and the S. rhizophila group. As it was known that only salt-treated cells of S. rhizophila were able to synthesize the compatible solute glucosylglycerol (GG), the ggpS gene responsible for GG synthesis was used for differentiation between both species and it was confirmed that it only occurred in S. rhizophila strains. As a further genetic marker the smeD gene, which is part of the genes coding for the multidrug efflux pump SmeDEF from S. maltophilia, was used. Based on the results we propose a combination of fingerprinting techniques using the 16S rDNA and the functional genes ggpS and smeD to distinguish both Stenotrophomonas species.  相似文献   
120.
The formation of chlorohydrins, bromohydrins, and iodohydrins from 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) by the myeloperoxidase-hydrogen peroxide-halide system was evaluated by means of matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometry. This approach allows to detect different kinds of the halogenation reaction even in one mass spectrum. Using a mixture of Cl-, Br-, I-, and SCN- at physiological concentrations, a bromination of POPC dominates by the MPO-hydrogen peroxide-halide system. Hypothiocyanite does apparently not react with the double bond of POPC, but increasing amounts of SCN- cause a decrease of the bromohydrin peaks. An interconversion between different hypohalous acids produced by the myeloperoxidase-hydrogen peroxide-halide system determines the pattern of halogenohydrins in POPC. Especially, hypochlorous acid is able to oxidise Br- to hypobromous acid.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号