首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   115篇
  免费   19篇
  2023年   3篇
  2022年   1篇
  2021年   4篇
  2019年   2篇
  2017年   2篇
  2016年   2篇
  2015年   4篇
  2014年   1篇
  2013年   5篇
  2012年   9篇
  2011年   5篇
  2010年   6篇
  2009年   6篇
  2008年   7篇
  2007年   6篇
  2006年   2篇
  2005年   4篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   6篇
  1997年   4篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   4篇
  1990年   1篇
  1988年   1篇
  1986年   2篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   4篇
  1979年   2篇
  1978年   4篇
  1974年   7篇
  1973年   5篇
  1968年   1篇
  1966年   1篇
  1965年   1篇
排序方式: 共有134条查询结果,搜索用时 31 毫秒
61.
62.
A coding single-nucleotide polymorphism (cSNP), K172N, in hTAS2R16, a gene encoding a taste receptor for bitter beta -glucopyranosides, shows significant association with alcohol dependence (P = .00018). This gene is located on chromosome 7q in a region reported elsewhere to exhibit linkage with alcohol dependence. The SNP is located in the putative ligand-binding domain and is associated with an increased sensitivity to many bitter beta -glucopyranosides in the presence of the N172 allele. Individuals with the ancestral allele K172 are at increased risk of alcohol dependence, regardless of ethnicity. However, this risk allele is uncommon in European Americans (minor-allele frequency [MAF] 0.6%), whereas 45% of African Americans carry the allele (MAF 26%), which makes it a much more significant risk factor in the African American population.  相似文献   
63.
64.
65.
Xu B  Sun Z  Liu Z  Guo H  Liu Q  Jiang H  Zou Y  Gong Y  Tischfield JA  Shao C 《PloS one》2011,6(4):e18618

Background

Micronuclei (MN) in mammalian cells serve as a reliable biomarker of genomic instability and genotoxic exposure. Elevation of MN is commonly observed in cells bearing intrinsic genomic instability and in normal cells exposed to genotoxic agents. DNA double-strand breaks are marked by phosphorylation of H2AX at serine 139 (γ-H2AX). One subclass of MN contains massive and uniform γ-H2AX signals. This study tested whether this subclass of MN can be induced by replication stress.

Principal Findings

We observed that a large proportion of MN, from 20% to nearly 50%, showed uniform staining by antibodies against γ-H2AX, a marker of DNA double-strand breaks (DSBs). Such micronuclei were designated as MN-γ–H2AX (+). We showed that such MN can be induced by chemicals that are known to cause DNA replication stress and S phase arrest. Hydroxyurea, aphidicolin and thymidine could all significantly induce MN-γ–H2AX (+), which were formed during S phase and appeared to be derived from aggregation of DSBs. MN-γ–H2AX (−), MN that were devoid of uniform γ-H2AX signals, were induced to a lesser extent in terms of fold change. Paclitaxel, which inhibits the disassembly of microtubules, only induced MN-γ–H2AX (−). The frequency of MN-γ–H2AX (+), but not that of MN-γ–H2AX (−), was also significantly increased in cells that experience S phase prolongation due to depletion of cell cycle regulator CUL4B. Depletion of replication protein A1 (RPA1) by RNA interference resulted in an elevation of both MN-γ–H2AX (+) and MN-γ–H2AX (−).

Conclusions/Significance

A subclass of MN, MN-γ–H2AX (+), can be preferentially induced by replication stress. Classification of MN according to their γ-H2AX status may provide a more refined evaluation of intrinsic genomic instabilities and the various environmental genotoxicants.  相似文献   
66.
The loss of the H(2)O(2) scavenger protein encoded by Prdx1 in mice leads to an elevation of reactive oxygen species (ROS) and tumorigenesis of different tissues. Loss of heterozygosity (LOH) mutations could initiate tumorigenesis through loss of tumor suppressor gene function in heterozygous somatic cells. A connection between the severity of ROS and the frequency of LOH mutations in vivo has not been established. Therefore, in this study, we characterized in vivo LOH in ear fibroblasts and splenic T cells of 3-4 month old Prdx1 deficient mice. We found that the loss of Prdx1 significantly elevates ROS amounts in T cells and fibroblasts. The basal amounts of ROS were higher in fibroblasts than in T cells, probably due to a less robust Prdx1 peroxidase activity in the former. Using Aprt as a LOH reporter, we observed an elevation in LOH mutation frequency in fibroblasts, but not in T cells, of Prdx1(-/-) mice compared to Prdx1(+/+) mice. The majority of the LOH mutations in both cell types were derived from mitotic recombination (MR) events. Interestingly, Mlh1, which is known to suppress MR between divergent sequences, was found to be significantly down-regulated in fibroblasts of Prdx1(-/-) mice. Therefore, the combination of elevated ROS amounts and down-regulation of Mlh1 may have contributed to the elevation of MR in fibroblasts of Prdx1(-/-) mice. We conclude that each tissue may have a distinct mechanism through which Prdx1 deficiency promotes tumorigenesis.  相似文献   
67.
68.
69.
70.
The bacterial tripeptide formyl-Met-Leu-Phe (fMLP) induces the secretion of enzyme(s) with phospholipase A(2) (PLA(2)) activity from human neutrophils. We show that circulating human neutrophils express groups V and X sPLA(2) (GV and GX sPLA(2)) mRNA and contain GV and GX sPLA(2) proteins, whereas GIB, GIIA, GIID, GIIE, GIIF, GIII, and GXII sPLA(2)s are undetectable. GV sPLA(2) is a component of both azurophilic and specific granules, whereas GX sPLA(2) is confined to azurophilic granules. Exposure to fMLP or opsonized zymosan results in the release of GV but not GX sPLA(2) and most, if not all, of the PLA(2) activity in the extracellular fluid of fMLP-stimulated neutrophils is due to GV sPLA(2). GV sPLA(2) does not contribute to fMLP-stimulated leukotriene B(4) production but may support the anti-bacterial properties of the neutrophil, because 10-100 ng per ml concentrations of this enzyme lead to Gram-negative bacterial membrane phospholipid hydrolysis in the presence of human serum. By use of a recently described and specific inhibitor of cytosolic PLA(2)-alpha (group IV PLA(2)alpha), we show that this enzyme produces virtually all of the arachidonic acid used for the biosynthesis of leukotriene B(4) in fMLP- and opsonized zymosan-stimulated neutrophils, the major eicosanoid produced by these pro-inflammatory cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号