首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   521篇
  免费   91篇
  2021年   4篇
  2020年   3篇
  2019年   3篇
  2018年   8篇
  2017年   9篇
  2016年   6篇
  2015年   15篇
  2014年   13篇
  2013年   18篇
  2012年   23篇
  2011年   21篇
  2010年   14篇
  2009年   15篇
  2008年   31篇
  2007年   20篇
  2006年   20篇
  2005年   19篇
  2004年   26篇
  2003年   23篇
  2002年   19篇
  2001年   20篇
  2000年   30篇
  1999年   16篇
  1998年   17篇
  1997年   9篇
  1996年   9篇
  1995年   6篇
  1994年   8篇
  1993年   4篇
  1992年   8篇
  1991年   10篇
  1990年   15篇
  1989年   10篇
  1988年   15篇
  1987年   4篇
  1986年   14篇
  1985年   22篇
  1984年   15篇
  1983年   8篇
  1981年   3篇
  1980年   6篇
  1979年   7篇
  1978年   3篇
  1977年   6篇
  1976年   6篇
  1975年   3篇
  1974年   4篇
  1973年   3篇
  1969年   4篇
  1964年   3篇
排序方式: 共有612条查询结果,搜索用时 843 毫秒
61.
62.

Background

In adults, increased sympathetic and decreased parasympathetic nervous system activity are associated with a less favorable metabolic profile. Whether this is already determined at early age is unknown. Therefore, we aimed to assess the association between autonomic nervous system activation and metabolic profile and its components in children at age of 5–6 years.

Methods

Cross-sectional data from an apparently healthy population (within the ABCD study) were collected at age 5–6 years in 1540 children. Heart rate (HR), respiratory sinus arrhythmia (RSA; parasympathetic activity) and pre-ejection period (PEP; sympathetic activity) were assessed during rest. Metabolic components were waist-height ratio (WHtR), systolic blood pressure (SBP), fasting triglycerides, glucose and HDL-cholesterol. Individual components, as well as a cumulative metabolic score, were analyzed.

Results

In analysis adjusted for child’s physical activity, sleep, anxiety score and other potential confounders, increased HR and decreased RSA were associated with higher WHtR (P< 0.01), higher SBP (p<0.001) and a higher cumulative metabolic score (HR: p < 0.001; RSA: p < 0.01). Lower PEP was only associated with higher SBP (p <0.05). Of all children, 5.6% had 3 or more (out of 5) adverse metabolic components; only higher HR was associated with this risk (per 10 bpm increase: OR = 1.56; p < 0.001).

Conclusions

This study shows that decreased parasympathetic activity is associated with central adiposity and higher SBP, indicative of increased metabolic risk, already at age 5–6 years.  相似文献   
63.

Background

MicroRNAs are being used in the oncology field to characterize tumors and predict the survival of cancer patients. Here, we explored the potential of microRNAs as biomarkers for coronary artery disease (CAD) and acute coronary syndromes.

Methods and results

Using real-time PCR-based profiling, we determined the microRNA signature of peripheral blood mononuclear cells (PBMCs) from stable and unstable CAD patients and unaffected controls. 129 of 157 microRNAs measured were expressed by PBMCs and low variability between separate PBMC pools was observed. The presence of CAD in general coincided with a marked 5-fold increase (P < 0.001) in the relative expression level of miR-135a, while the expression of miR-147 was 4-fold decreased (P < 0.05) in PBMCs from CAD patients as compared to controls, resulting in a 19-fold higher miR-135a/miR-147 ratio (P < 0.001) in CAD. MicroRNA/target gene/biological function linkage analysis suggested that the change in PBMC microRNA signature in CAD patients is probably associated with a change in intracellular cadherin/Wnt signaling. Interestingly, unstable angina pectoris patients could be discriminated from stable patients based upon their relatively high expression level of a cluster of three microRNAs including miR-134, miR-198, and miR-370, suggesting that the microRNA signatures can be used to identify patients at risk for acute coronary syndromes.

Conclusions

The present study is the first to show that microRNA signatures can possibly be utilized to identify patients exhibiting atherosclerotic CAD in general and those at risk for acute coronary syndromes. Our findings highlight the importance of microRNAs signatures as novel tool to predict clinical disease outcomes.  相似文献   
64.
Non-viral vectors such as cationic lipids are capable of delivering nucleic acids, including genes, siRNA or antisense RNA into cells, thus potentially resulting in their functional expression. These vectors are considered as an attractive alternative for virus-based delivery systems, which may suffer from immunological and mutational hazards. However, the efficiency of cationic-mediated gene delivery, although often sufficient for cell biological purposes, runs seriously short from a therapeutics point of view, as realizing this objective requires a higher level of transfection than attained thus far. To develop strategies for improvement, there is not so much a need for novel delivery systems. Rather, better insight is needed into the mechanism of delivery, including lipoplex–cell surface interaction, route of internalization and concomitant escape of DNA/RNA into the cytosol, and transport into the nucleus. Current work indicates that a major obstacle involves the relative inefficient destabilization of membrane-bounded compartments in which lipoplexes reside after their internalization by the cell. Such an activity requires the capacity of lipoplexes of undergoing polymorphic transitions such as a membrane destabilizing hexagonal phase, while cellular components may aid in this process. A consequence of the latter notion is that for development of a novel generation of delivery devices, entry pathways have to be triggered by specific targeting to select delivery into intracellular compartments which are most susceptible to lipoplex-induced destabilization, thereby allowing the most efficient release of DNA, a minimal requirement for optimizing non-viral vector-mediated transfection. Dedicated to Prof. K. Arnold on the occasion of his 65th birthday.  相似文献   
65.
Using a mutant hepatocyte cell line in which E-cadherin and beta-catenin are completely depleted from the cell surface, and, consequently, fail to form adherens junctions, we have investigated adherens junction requirement for apical-basolateral polarity development and polarized membrane trafficking. It is shown that these hepatocytes retain the capacity to form functional tight junctions, develop full apical-basolateral cell polarity, and assemble a subapical cortical F-actin network, although with a noted delay and a defect in subsequent apical lumen remodeling. Interestingly, whereas hepatocytes typically target the plasma membrane protein dipeptidyl peptidase IV first to the basolateral surface, followed by its transcytosis to the apical domain, hepatocytes lacking E-cadherin-based adherens junctions target dipeptidyl peptidase IV directly to the apical surface. Basolateral surface-directed transport of other proteins or lipids tested was not visibly affected in hepatocytes lacking E-cadherin-based adherens junctions. Together, our data show that E-cadherin/beta-catenin-based adherens junctions are dispensable for tight junction formation and apical lumen biogenesis but not for apical lumen remodeling. In addition, we suggest a possible requirement for E-cadherin/beta-catenin-based adherens junctions with regard to the indirect apical trafficking of specific proteins in hepatocytes.  相似文献   
66.
The presence of the anaerobic spore former Clostridium in Arthrospira platensis destined for human consumption is generally not assessed during quality assurance procedures. As this nutraceutical is administered as complementary medicine to the immunocompromised, this study aimed to investigate the presence of these potential pathogens. Anaerobic counts performed on tablets from a single manufacturer indicated an excess of 105 CFU/endospores g−1 tablet for three different A. platensis batches. Tests for coliforms for use as “indicators” of pathogens in the tablets were negative. Using classic culture techniques, five species of Clostridium were isolated. Subsequent use of PCR-denaturing gradient gel electrophoresis (DGGE) fingerprinting of tablets showed a divergent microbial population, with a predominance of anaerobic endospore formers, including Clostridium. Sequencing of a 1.5 kb 16S rDNA clone library and phylogenetic analyses of prominent operational taxonomic units confirmed the presence of an additional five Clostridium spp. and other genera in the tablets. A composite molecular ladder, using 16S rRNA DGGE amplicons of 17 representative bacterial species was constructed to assist in identifying anaerobes present in tablets sourced from three different A. platensis manufacturers. Results indicated that commercial A. platensis preparations were contaminated with potentially hazardous clostridia and other anaerobic species. Results suggest that certain commercial A. platensis preparations require stringent microbial quality assurance measures to ensure safe use as a nutraceutical for the immunocompromised and the general public.  相似文献   
67.
Whether evolution is erratic due to random historical details, or is repeatedly directed along similar paths by certain constraints, remains unclear. Epistasis (i.e. non-additive interaction between mutations that affect fitness) is a mechanism that can contribute to both scenarios. Epistasis can constrain the type and order of selected mutations, but it can also make adaptive trajectories contingent upon the first random substitution. This effect is particularly strong under sign epistasis, when the sign of the fitness effects of a mutation depends on its genetic background. In the current study, we examine how epistatic interactions between mutations determine alternative evolutionary pathways, using in vitro evolution of the antibiotic resistance enzyme TEM-1 β-lactamase. First, we describe the diversity of adaptive pathways among replicate lines during evolution for resistance to a novel antibiotic (cefotaxime). Consistent with the prediction of epistatic constraints, most lines increased resistance by acquiring three mutations in a fixed order. However, a few lines deviated from this pattern. Next, to test whether negative interactions between alternative initial substitutions drive this divergence, alleles containing initial substitutions from the deviating lines were evolved under identical conditions. Indeed, these alternative initial substitutions consistently led to lower adaptive peaks, involving more and other substitutions than those observed in the common pathway. We found that a combination of decreased enzymatic activity and lower folding cooperativity underlies negative sign epistasis in the clash between key mutations in the common and deviating lines (Gly238Ser and Arg164Ser, respectively). Our results demonstrate that epistasis contributes to contingency in protein evolution by amplifying the selective consequences of random mutations.  相似文献   
68.
69.
Recent rapid developments in genomics will likely lead to a rapid expansion in identifying defective genes causing a variety of diseases, implying a vast increase in the number of therapeutic targets. Treatment of such diseases may include strategies ranging from gene delivery and replacement to antisense approaches. For successful development of gene therapies, a minimal requirement involves the engineering of appropriate gene- or oligonucleotide-carrier systems, which are necessary for protective purposes (against nucleases) and transport (to target tissue and cells in vivo). Further, they should also display the propensity to efficiently translocate the oligonucleotides and gene constructs into cells, via passage across several membrane barriers. The emphasis in this review will be on the use of cationic lipids for that purpose. Crucial to successful application of this sophisticated technology in vivo will be a need for a better understanding of fundamental and structural parameters that govern transfection efficiency, including the issues of cationic lipid/DNA complex assembly (with or without helper lipid), stability towards biological fluids, complex-target membrane interaction and translocation, and gene-integration into the nucleus. Biophysical and biochemical characterization of so-called lipoplexes, and their interaction with cells in vitro, are considered instrumental in reaching such insight. Here, most recent advances in cationic lipid-mediated gene delivery are discussed from such a perspective.  相似文献   
70.
In an experimental study of adaptation to negative pleiotropic effects of a major fungicide resistance mutation in the filamentous fungus Aspergillus nidulans we have investigated the relative effectiveness of artificial selection vs. natural selection on the rate of compensatory evolution. Using mycelial growth rate as a fitness measure, artificial selection involved the weekly transfer of the fastest growing sector onto a fresh plate. Natural selection was approximated by transferring random samples of all the spores produced by the mycelium. Fungicide resistant and fungicide sensitive haploid and diploid strains were used in an evolution experiment over 10 weekly transfers, which is equivalent to 1200 cell cycles. Two different environmental conditions were applied: a constant fungicide-free environment and a weekly alternation between presence and absence of fungicide. Results show that for all strains and conditions used the transfer of a random sample of all spores leads to more rapid adaptation than the transfer of the visually 'fittest' sector. The rates of compensatory evolution in the constant and the alternating environment did not differ. Moreover, haploid strains tend to have a higher rate of adaptation than isogenic diploid strains.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号