排序方式: 共有238条查询结果,搜索用时 15 毫秒
101.
Tino Krell 《Microbial biotechnology》2008,1(2):126-136
Almost any process in life is accompanied by heat changes which can be monitored by isothermal titration calorimetry (ITC) and differential scanning calorimetry (DSC). Both techniques are now established tools in fundamental research but over the last decade a clear tendency towards more problem‐driven applications is noted. This review aims at summarizing these problem‐oriented applications of microcalorimetry and the solutions both techniques can provide to problems in biotechnology. The biotechnological issues to which microcalorimetry has been successfully applied are as diverse as rational drug design, overcoming drug resistance, optimization of long‐term stability of proteins, estimation of the bioavailability of drugs, control of complex pharmaceutical products or the optimization of gene delivery efficiency. The main limitation of microcalorimetry, which is the relatively large amounts of sample necessary for analysis, is less important in the biotechnology sector which frequently uses large‐scale produced bulk products for analysis. The recently developed high‐throughput DSC and ITC microcalorimeters will additionally reduce the labour intensity of these techniques. Due to the precision of microcalorimetric analyses and the versatility of processes which can be studied, it is expected that ITC and DSC will soon be key technologies in biotechnological research. 相似文献
102.
Movahed P Jönsson BA Birnir B Wingstrand JA Jørgensen TD Ermund A Sterner O Zygmunt PM Högestätt ED 《The Journal of biological chemistry》2005,280(46):38496-38504
The endogenous C18 N-acylethanolamines (NAEs) N-linolenoylethanolamine (18:3 NAE), N-linoleoylethanolamine (18:2 NAE), N-oleoylethanolamine (18:1 NAE), and N-stearoylethanolamine (18:0 NAE) are structurally related to the endocannabinoid anandamide (20:4 NAE), but these lipids are poor ligands at cannabinoid CB(1) receptors. Anandamide is also an activator of the transient receptor potential (TRP) vanilloid 1 (TRPV(1)) on primary sensory neurons. Here we show that C18 NAEs are present in rat sensory ganglia and vascular tissue. With the exception of 18:3 NAE in rat sensory ganglia, the levels of C18 NAEs are equal to or substantially exceed those of anandamide. At submicromolar concentrations, 18:3 NAE, 18:2 NAE, and 18:1 NAE, but not 18:0 NAE and oleic acid, activate native rTRPV(1) on perivascular sensory nerves. 18:1 NAE does not activate these nerves in TRPV(1) gene knock-out mice. Only the unsaturated C18 NAEs elicit whole cell currents and fluorometric calcium responses in HEK293 cells expressing hTRPV(1). Molecular modeling revealed a low energy cluster of U-shaped unsaturated NAE conformers, sharing several pharmacophoric elements with capsaicin. Furthermore, one of the two major low energy conformational families of anandamide also overlaps with the cannabinoid CB(1) receptor ligand HU210, which is in line with anandamide being a dual activator of TRPV(1) and the cannabinoid CB(1) receptor. This study shows that several endogenous non-cannabinoid NAEs, many of which are more abundant than anandamide in rat tissues, activate TRPV(1) and thus may play a role as endogenous TRPV(1) modulators. 相似文献
103.
104.
Tino Krell José A. Gavira Amalia Roca Miguel A. Matilla 《Microbial biotechnology》2023,16(8):1611-1615
Microorganisms are exposed in their natural niches to a wide diversity of signal molecules. Specific detection of these signals results in alterations in microbial metabolism and physiology. Auxins like indole-3-acetic acid are key phytohormones that regulate plant growth and development. Nonetheless, auxin biosynthesis is not restricted to plants but is ubiquitous in all kingdoms of life. This wide phylogenetic distribution of auxins production, together with the diversity of regulated cellular processes, have made auxins key intra- and inter-kingdom signal molecules in life modulating, for example microbial physiology, metabolism and virulence. Despite their increasing importance as global signal molecules, the mechanisms by which auxins perform their regulatory functions in microorganisms are largely unknown. In this article, we outline recent research that has advanced our knowledge of the mechanisms of bacterial auxin perception. We also highlight the potential applications of this research in aspects such as antibiotic production, biosensor design, plant microbiome engineering and antivirulence therapies. 相似文献
105.
We analysed aspects of the embryonic development of the stomatopod crustacean Gonodactylaceus falcatus focusing on the cell division in the ectoderm of the germ band. As in many other malacostracan crustaceans, the growth zone in the caudal papilla is formed by 19 ectoteloblasts and 8 mesoteloblasts arranged in rings. These teloblasts give rise to the cellular material of the largest part of the post-naupliar germ band in a stereotyped cell division pattern. The regularly arranged cells of the genealogical units produced by the ectoteloblast divide twice in longitudinal direction. The intersegmental furrows form within the descendants of one genealogical unit in the ectoderm. Hence, embryos of G. falcatus share some features of the stereotyped cell division pattern with that in other malacostracan crustaceans, which is unique among arthropods. In contrast to the other malacostracan taxa studied so far, stomatopods show slightly oblique spindle direction and a tilted position of the cells within the genealogical units. The inclusion of data on Leptostraca suggests that aspects of stereotyped cell divisions in the germ band must be assumed for the ground pattern of Malacostraca. Moreover, Stomatopoda and Leptostraca share the lateral displacement of cells during the mediolateral divisions of the ectodermal genealogical units in the post-naupliar germ band. The Caridoida within the Eumalacostraca apomorphically evolved the strict longitudinal orientation of spindle axes and cell positions, reaching the highest degree of regularity in the Peracarida. The phylogenetic analysis of the distribution of developmental characters is the prerequisite for the analysis of the evolution of developmental patterns and mechanisms. 相似文献
106.
L. A. Ruocco C. Treno U. A. Gironi Carnevale C. Arra C. Mattern J. P. Huston M. A. de Souza Silva S. Nikolaus A. Scorziello M. Nieddu G. Boatto P. Illiano C. Pagano A. Tino A. G. Sadile 《Amino acids》2014,46(9):2105-2122
Intranasal application of dopamine (IN-DA) has been shown to increase motor activity and to release DA in the ventral (VS) and dorsal striatum (DS) of rats. The aim of the present study was to assess the effects of IN-DA treatment on parameters of DA and excitatory amino acid (EAA) function in prepuberal rats of the Naples high-excitability (NHE) line, an animal model for attention-deficit hyperactivity disorder (ADHD) and normal random bred (NRB) controls. NHE and NRB rats were daily administered IN-DA (0.075, 0.15, 0.30 mg/kg) or vehicle for 15 days from postnatal days 28–42 and subsequently tested in the Làt maze and in the Eight-arm radial Olton maze. Soluble and membrane-trapped l-glutamate (l-Glu) and l-aspartate (l-Asp) levels as well as NMDAR1 subunit protein levels were determined after sacrifice in IN-DA- and vehicle-treated NHE and NRB rats in prefrontal cortex (PFc), DS and VS. Moreover, DA transporter (DAT) protein and tyrosine hydroxylase (TH) levels were assessed in PFc, DS, VS and mesencephalon (MES) and in ventral tegmental area (VTA) and substantia nigra, respectively. In NHE rats, IN-DA (0.30 mg/kg) decreased horizontal activity and increased nonselective attention relative to vehicle, whereas the lower dose (0.15 mg/kg) increased selective spatial attention. In NHE rats, basal levels of soluble EAAs were reduced in PFc and DS relative to NRB controls, while membrane-trapped EAAs were elevated in VS. Moreover, basal NMDAR1 subunit protein levels were increased in PFc, DS and VS relative to NRB controls. In addition, DAT protein levels were elevated in PFc and VS relative to NRB controls. IN-DA led to a number of changes of EAA, NMDAR1 subunit protein, TH and DAT protein levels in PFc, DS, VS, MES and VTA, in both NHE and NRB rats with significant differences between lines. Our findings indicate that the NHE rat model of ADHD may be characterized by (1) prefrontal and striatal DAT hyperfunction, indicative of DA hyperactivty, and (2) prefrontal and striatal NMDA receptor hyperfunction indicative of net EAA hyperactivty. IN-DA had ameliorative effects on activity level, attention, and working memory, which are likely to be associated with DA action at inhibitory D2 autoreceptors, leading to a reduction in striatal DA hyperactivity and, possibly, DA action on striatal EAA levels, resulting in a decrease of striatal EAA hyperfunction (with persistence of prefrontal EAA hyperfunction). Previous studies on IN-DA treatment in rodents have indicated antidepressant, anxiolytic and anti-parkinsonian effects in relation to enhanced central DAergic activity. Our present results strengthen the prospects of potential therapeutic applications of intranasal DA by indicating an enhancement of selective attention and working memory in a deficit model. 相似文献
107.
108.
Pallerla SR Knebel S Polen T Klauth P Hollender J Wendisch VF Schoberth SM 《FEMS microbiology letters》2005,253(1):133-140
Volutin granules are intracellular storages of complexed inorganic polyphosphate (poly P). Histochemical staining procedures differentiate between pathogenic corynebacteria such as Corynebacterum diphtheriae (containing volutin) and non-pathogenic species, such as C. glutamicum. Here we report that strains ATCC13032 and MH20-22B of the non-pathogenic C. glutamicum also formed subcellular entities (18-37% of the total cell volume) that had the typical characteristics of volutin granules: (i) volutin staining, (ii) green UV fluorescence when stained with 4',6-diamidino-2-phenylindole, (iii) electron-dense and rich in phosphorus when determined with transmission electron microscopy and X-ray microanalysis, and (iv) 31P NMR poly P resonances of isolated granules dissolved in EDTA. MgCl2 addition to the growth medium stimulated granule formation but did not effect expression of genes involved in poly P metabolism. Granular volutin fractions from lysed cells contained polyphosphate glucokinase as detected by SDS-PAGE/MALDI-TOF, indicating that this poly P metabolizing enzyme is present also in intact poly P granules. The results suggest that formation of volutin is a more widespread phenomenon than generally accepted. 相似文献
109.
Jane U. Jepsen Martin Biuw Rolf A. Ims Lauri Kapari Tino Schott Ole Petter L. Vindstad Snorre B. Hagen 《Ecosystems》2013,16(4):561-575
Insect outbreaks in northern-boreal forests are expected to intensify owing to climate warming, but our understanding of direct and cascading impacts of insect outbreaks on forest ecosystem functioning is deficient. The duration and severity of outbreaks by geometrid moths in northern Fennoscandian mountain birch forests have been shown to be accentuated by a recent climate-mediated range expansion, in particular of winter moth (Operophtera brumata). Here, we assess the effect of moth outbreak severity, quantified from satellite-based defoliation maps, on the state of understory vegetation and the abundance of key vertebrate herbivores in mountain birch forest in northern Norway. We show that the most recent moth outbreak caused a regional-scale state change to the understory vegetation, mainly due to a shift in dominance from the allelopathic and unpalatable dwarf-shrub Empetrum nigrum to the productive and palatable grass Avenella flexuosa. Both these central understory plant species responded significantly and nonlinearly to increasing outbreak severity. We further provide evidence that the effects of the outbreak on understory vegetation cascaded to cause strong but opposite impacts on the abundance of the two most common herbivore groups. Rodents increased with defoliation, largely mirroring the increase in A. flexuosa, whereas ungulate abundance instead showed a decreasing trend. Our analyses also suggest that the response of understory vegetation to defoliation may depend on the initial state of the forest, with poorer forest types potentially allowing stronger responses to defoliation. 相似文献
110.
Chavarría M Santiago C Platero R Krell T Casasnovas JM de Lorenzo V 《The Journal of biological chemistry》2011,286(11):9351-9359
The catabolite repressor/activator (Cra) protein is a global sensor and regulator of carbon fluxes through the central metabolic pathways of Gram-negative bacteria. To examine the nature of the effector (or effectors) that signal such fluxes to the protein of Pseudomonas putida, the Cra factor of this soil microorganism has been purified and characterized and its three-dimensional structure determined. Analytical ultracentrifugation, gel filtration, and mobility shift assays showed that the effector-free Cra is a dimer that binds an operator DNA sequence in the promoter region of the fruBKA cluster. Furthermore, fructose 1-phosphate (F1P) was found to most efficiently dissociate the Cra-DNA complex. Thermodynamic parameters of the F1P-Cra-DNA interaction calculated by isothermal titration calorimetry revealed that the factor associates tightly to the DNA sequence 5′-TTAAACGTTTCA-3′ (KD = 26.3 ± 3.1 nm) and that F1P binds the protein with an apparent stoichiometry of 1.06 ± 0.06 molecules per Cra monomer and a KD of 209 ± 20 nm. Other possible effectors, like fructose 1,6-bisphosphate, did not display a significant affinity for the regulator under the assay conditions. Moreover, the structure of Cra and its co-crystal with F1P at a 2-Å resolution revealed that F1P fits optimally the geometry of the effector pocket. Our results thus single out F1P as the preferred metabolic effector of the Cra protein of P. putida. 相似文献