首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7619篇
  免费   510篇
  国内免费   680篇
  8809篇
  2024年   26篇
  2023年   144篇
  2022年   313篇
  2021年   474篇
  2020年   294篇
  2019年   396篇
  2018年   331篇
  2017年   275篇
  2016年   360篇
  2015年   516篇
  2014年   579篇
  2013年   608篇
  2012年   670篇
  2011年   626篇
  2010年   392篇
  2009年   313篇
  2008年   366篇
  2007年   328篇
  2006年   291篇
  2005年   244篇
  2004年   204篇
  2003年   154篇
  2002年   135篇
  2001年   98篇
  2000年   80篇
  1999年   86篇
  1998年   44篇
  1997年   58篇
  1996年   58篇
  1995年   45篇
  1994年   32篇
  1993年   35篇
  1992年   48篇
  1991年   42篇
  1990年   28篇
  1989年   21篇
  1988年   12篇
  1987年   25篇
  1986年   16篇
  1985年   15篇
  1984年   1篇
  1983年   7篇
  1982年   5篇
  1981年   3篇
  1980年   4篇
  1977年   2篇
  1974年   1篇
  1973年   2篇
  1968年   1篇
  1967年   1篇
排序方式: 共有8809条查询结果,搜索用时 8 毫秒
941.
942.
943.
944.
945.
Lindi M. Wahl  Anna Dai Zhu 《Genetics》2015,200(1):309-320
The survival of rare beneficial mutations can be extremely sensitive to the organism’s life history and the trait affected by the mutation. Given the tremendous impact of bacteria in batch culture as a model system for the study of adaptation, it is important to understand the survival probability of beneficial mutations in these populations. Here we develop a life-history model for bacterial populations in batch culture and predict the survival of mutations that increase fitness through their effects on specific traits: lag time, fission time, viability, and the timing of stationary phase. We find that if beneficial mutations are present in the founding population at the beginning of culture growth, mutations that reduce the mortality of daughter cells are the most likely to survive drift. In contrast, of mutations that occur de novo during growth, those that delay the onset of stationary phase are the most likely to survive. Our model predicts that approximately fivefold population growth between bottlenecks will optimize the occurrence and survival of beneficial mutations of all four types. This prediction is relatively insensitive to other model parameters, such as the lag time, fission time, or mortality rate of the population. We further estimate that bottlenecks that are more severe than this optimal prediction substantially reduce the occurrence and survival of adaptive mutations.  相似文献   
946.
947.
948.
BackgroundApproximately 8% of the human genome consists of sequences of retroviral origin, a result of ancestral infections of the germ line over millions of years of evolution. The most recent of these infections is attributed to members of the human endogenous retrovirus type-K (HERV-K) (HML-2) family. We recently reported that a previously undetected, large group of HERV-K (HML-2) proviruses, which are descendants of the ancestral K111 infection, are spread throughout human centromeres.ResultsStudying the genomes of certain cell lines and the DNA of healthy individuals that seemingly lack K111, we discover new HERV-K (HML-2) members hidden in pericentromeres of several human chromosomes. All are related through a common ancestor, termed K222, which is a virus that infected the germ line approximately 25 million years ago. K222 exists as a single copy in the genomes of baboons and high order primates, but not New World monkeys, suggesting that progenitor K222 infected the primate germ line after the split between New and Old World monkeys. K222 exists in modern humans at multiple loci spread across the pericentromeres of nine chromosomes, indicating it was amplified during the evolution of modern humans.ConclusionsCopying of K222 may have occurred through recombination of the pericentromeres of different chromosomes during human evolution. Evidence of recombination between K111 and K222 suggests that these retroviral sequences have been templates for frequent cross-over events during the process of centromere recombination in humans.  相似文献   
949.
Four aerobic bacterial strains capable of utilizing di-n-butyl phthalate (DBP) as the sole source of carbon and energy were isolated from river sediments. Based on the morphology, biochemical characterization, and 16S rRNA gene sequence analysis, they were identified as Gordonia sp. The optimal conditions for DBP degradation by these strains were found to be pH 7.0, 30°C, and stirring at 175 rpm. These four strains could degrade, respectively, 96, 98, 98, and 78% of DBP (400 mg l−1) as well as dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-octyl phthalate (DOP), di-isooctyl phthalate (DIOP), and di-isononyl phthalate (DINP). Furthermore, partial sequences of the gene for 3,4-phthalate dioxygenase were obtained from all four strains. To our knowledge, this is the first time that the 3,4-phthalate dioxygenase gene has been successfully cloned from Gordonia sp.  相似文献   
950.
l-glutamine (Gln) is an important conditionally necessary amino acid in human body and potential demand in food or medicine industry is expected. High efficiency of l-Gln production by coupling genetic engineered bacterial glutamine synthetase (GS) with yeast alcoholic fermentation system has been developed. We report here first the application of small ubiquitin-related modifier (SUMO) fusion technology to the expression and purification of recombinant Bacillus subtilis GS. In order to obtain GS with high Gln-forming activity, safety and low cost for food and pharmaceutics industry, 0.1% (w/v) lactose was selected as inducer. The fusion protein was expressed in totally soluble form in E. coli, and expression was verified by SDS–PAGE and western blot analysis. The fusion protein was purified to 90% purity by nickel nitrilo-triacetic acid (Ni–NTA) resin chromatography with a yield of 625 mg per liter fermentation culture. After the SUMO/GS fusion protein was cleaved by the SUMO protease, the cleaved sample was reapplied to a Ni–NTA column. Finally, about 121 mg recombinant GS was obtained from 1 l fermentation culture with no less than 96% purity. The recombinant purified GS showed great transferase activity (23 U/mg), with 25 U recombinant GS in a 50 ml reaction system, a biosynthesis yield of 27.5 g/l l-Gln was detected by high pressure liquid chromatography (HPLC) or thin-layer chromatography. Thus, the application of SUMO technology to the expression and purification of GS potentially could be employed for the industrial production of l-Gln.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号