首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   1篇
  国内免费   1篇
  19篇
  2023年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   4篇
  2012年   2篇
  2011年   1篇
  2006年   1篇
  2004年   1篇
  1996年   1篇
排序方式: 共有19条查询结果,搜索用时 15 毫秒
11.
Food chain contamination by soil cadmium (Cd) through vegetable consumption poses a threat to human health. Therefore, an understanding is needed on the relationship between the phytoavailability of Cd in soils and its uptake in edible tissues of vegetables. The purpose of this study was to establish soil Cd thresholds of representative Chinese soils based on dietary toxicity to humans and develop a model to evaluate the phytoavailability of Cd to Pak choi (Brassica chinensis L.) based on soil properties. Mehlich-3 extractable Cd thresholds were more suitable for Stagnic Anthrosols, Calcareous, Ustic Cambosols, Typic Haplustalfs, Udic Ferrisols and Periudic Argosols with values of 0.30, 0.25, 0.18, 0.16, 0.15 and 0.03 mg kg−1, respectively, while total Cd is adequate threshold for Mollisols with a value of 0.86 mg kg−1. A stepwise regression model indicated that Cd phytoavailability to Pak choi was significantly influenced by soil pH, organic matter, total Zinc and Cd concentrations in soil. Therefore, since Cd accumulation in Pak choi varied with soil characteristics, they should be considered while assessing the environmental quality of soils to ensure the hygienically safe food production.  相似文献   
12.
Progenin III, one of the most active spirostanol saponins, is a potential candidate for anti-cancer therapy due to its strong antitumor activity and low hemolytic activity. However, the concentration of progenin III is extremely low in natural Dioscorea plants. In this paper, the progenin III production from total steroidal saponins of Dioscorea nipponica Makino was studied using the crude enzyme from Aspergillus oryzae DLFCC-38. The crude enzyme converting total steroidal saponins into progenin III was obtained from the A. oryzae DLFCC-38 culture. For enzyme production, the strain was cultured for 72 h at 30 °C with shaking at 150 rpm in 5 % (w/v) malt extract medium containing 2 % (v/v) extract of D. nipponica as the enzyme inducer. The crude enzyme converted total steroidal saponins into major progenin III with a high yield when the reaction was carried out for 9 h at 50 °C and pH 5.0 with the 20 mg/ml of substrate. In the preparation of progenin III, 117 g of crude progenin III was obtained from 160 g of substrate, and the crude product was purified with silica gel column to obtain 60.3 g progenin III of 93.4 % purity.  相似文献   
13.
A pot experiment was conducted to investigate the potential for phytoextraction of heavy metals and rhizoremediation of polycyclic aromatic hydrocarbons (PAHs) in co-contaminated soil by co-planting a cadmium/zinc (Cd/Zn) hyperaccumulator and lead (Pb) accumulator Sedum alfredii with ryegrass (Lolium perenne) or castor (Ricinus communis). Co-planting with castor decreased the shoot biomass of S. alfredii as compared to that in monoculture. Cadmium concentration in S. alfredii shoot significantly decreased when grown with ryegrass or castor as compared to that in monoculture. However, no reduction of Zn or Pb concentration in S. alfredii shoot was detected in co-planting treatments. Total removal of either Cd, Zn, or Pb by plants was similar across S. alfredii monoculture or co-planting with ryegrass or castor, except enhanced Pb removal in S. alfredii and ryegrass co-planting treatment. Co-planting of S. alfredii with ryegrass or castor significantly enhanced the pyrene and anthracene dissipation as compared to that in the bare soil or S. alfredii monoculture. This appears to be due to the increased soil microbial population and activities in both co-planting treatments. Co-planting of S. alfredii with ryegrass or castor provides a promising strategy to mitigate both metal and PAH contaminants from co-contaminated soils.  相似文献   
14.
This study aims to determine the spatial characteristics and real-time kinetics of cadmium transport in hyperaccumulator (HE) and non hyperaccumulator (NHE) ecotypes of Sedum alfredii using a non-invasive Cd-selective microelectrode. Compared with the NHE S. alfredii, the HE S. alfredii showed a higher Cd influx in the root apical region and root hair cells, as well as a significantly higher Cd efflux in the leaf petiole after root pre-treatment with cadmium chloride (CdCl2). Thus, HE S. alfredii has a higher capability for the translocation of absorbed Cd to the shoot. Moreover, the mesophyll tissues, isolated mesophyll protoplasts, and intact vacuoles from HE S. alfredii exhibited an instantaneous influx of Cd in response to CdCl2 treatment with mean rates that are markedly higher than those from NHE S. alfredii. Therefore, the hyper-accumulating trait of HE S. alfredii is characterized by the rapid Cd uptake in specific root regions, including the apical region and root hair cells, as well as by the rapid root-to-shoot translocation and the highly efficient Cd-permeable transport system in the plasma membrane and mesophyll cell tonoplast. We suggest that the non-invasive Cd-selective microelectrode is an excellent method with a high degree of spatial resolution for the study of Cd transport at the tissue, cellular, and sub-cellular levels in plants.  相似文献   
15.
时变环境Lotka—Volterra系统的渐近性态   总被引:1,自引:0,他引:1  
本文研究时变环境下的Lotka-Volterra系统,给出一系列关于这类系统持久性以及正T-周期解全局渐近稳定的充分条件.  相似文献   
16.
17.
A novel protodioscin-(steroidal saponin)-glycoside hydrolase, named protodioscin-glycosidase-1 (PGase-1), was purified and characterized from the Aspergillus oryzae strain. The molecular mass of this enzyme was determined to be about 55 kDa based on SDS-polyacrylamide gel electrophoresis. PGase-1 was able to hydrolyze the terminal 26-O-β-d-glucopyranoside of protodioscin (furostanoside) to produce dioscin (spirostanoside), and then further hydrolyze the terminal 3-O-(1?→?4)-α-l-rhamnopyranoside of dioscin to form progenin III. However, PGase-1 could hardly hydrolyze the 3-O-(1?→?2)-α-l-rhamnopyranoside of progenin III, 3-O-β-d-glucoside of trillin, and the 1-O-glycosides of ophiopogonin D (steroidal saponin). In addition, PGase-1 also could hydrolyze the α-d-galactopyranoside, β-d-glucopyranoside, and β-d-galactopyranoside of p-nitrophenyl-glycosides, but the enzyme could not hydrolyze the α-d-mannopyranoside, α-l-arabinopyranoside, α-d-glucopyranoside, β-d-xylopyranoside, and α-l-rhamnopyranoside of p-nitrophenyl-glycosides. These new properties of PGase-1 were significantly different from those of previously described steroidal saponin-glycosidases and the glycosidases currently described in Enzyme Nomenclature by the NC-IUBMB. The gene (termed as pgase-1) encoding PGase-1 was cloned, sequenced, and expressed in Pichia pastoris GS115. The complete nucleotide sequence of pgase-1 consists of 1,725 bp. The recombinant PGase-1 from recombinant P. pastoris GS115 strain also showed the activity hydrolyzing glycosides of steroidal saponins which was similar to that of the wild-type PGase-1 from A. oryzae. The PGase-1 gene is highly similar to Aspergilli α-amylase (EC 3.2.1.1), and PGase-1 should be classified as glycoside hydrolase family 13 by the method of gene sequence-based classification. But the enzyme properties of PGase-1 are different from those of α-amylase in this family.  相似文献   
18.
Huang H  Yu N  Wang L  Gupta DK  He Z  Wang K  Zhu Z  Yan X  Li T  Yang XE 《Bioresource technology》2011,102(23):11034-11038
Cadmium (Cd) and dichlorodiphenyltrichloroethane (DDT) or its metabolite residues are frequently detected in agricultural soils and food, posing a threat to human health. The objective of this study was to compare the ability of 23 genotypes of Ricinus communis in mobilizing and uptake of Cd and DDTs (p,p′-DDT, o,p′-DDT, p,p′-DDD and p,p′-DDE) in the co-contaminated soil. The plant genotypes varied largely in the uptake and accumulation of DDTs and Cd, with mean concentrations of 0.37, 0.43 and 70.51 for DDTs, and 1.22, 2.27 and 37.63 mg kg−1 dw for Cd in leaf, stem and root, respectively. The total uptake of DDTs and Cd varied from 83.1 to 267.8 and 66.0 to 155.1 μg per pot, respectively. These results indicate that R. communis has great potential for removing DDTs and Cd from contaminated soils attributed to its fast growth, high biomass, strong absorption and accumulation for both DDTs and Cd.  相似文献   
19.
Biomechanics and Modeling in Mechanobiology - We developed the pelvic floor model in physiological and pathological states to understand the changes of biomechanical axis and support that may occur...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号