首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108082篇
  免费   8382篇
  国内免费   9029篇
  125493篇
  2024年   240篇
  2023年   1417篇
  2022年   3261篇
  2021年   5514篇
  2020年   3777篇
  2019年   4680篇
  2018年   4433篇
  2017年   3239篇
  2016年   4592篇
  2015年   6684篇
  2014年   7850篇
  2013年   8304篇
  2012年   9988篇
  2011年   8983篇
  2010年   5553篇
  2009年   4973篇
  2008年   5712篇
  2007年   5133篇
  2006年   4457篇
  2005年   3492篇
  2004年   2974篇
  2003年   2719篇
  2002年   2273篇
  2001年   1867篇
  2000年   1694篇
  1999年   1669篇
  1998年   1036篇
  1997年   1001篇
  1996年   942篇
  1995年   821篇
  1994年   787篇
  1993年   617篇
  1992年   818篇
  1991年   617篇
  1990年   466篇
  1989年   443篇
  1988年   354篇
  1987年   344篇
  1986年   266篇
  1985年   286篇
  1984年   156篇
  1983年   161篇
  1982年   99篇
  1981年   85篇
  1980年   60篇
  1979年   77篇
  1977年   59篇
  1975年   56篇
  1974年   52篇
  1973年   56篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
993.
RNA can interact with RNA-binding proteins(RBPs), mRNA, or other non-coding RNAs(ncRNAs) to form complex regulatory networks. High-throughput CLIP-seq, degradome-seq, and RNA-RNA interactome sequencing methods represent powerful approaches to identify biologically relevant ncRNA-target and protein-ncRNA interactions. However, assigning ncRNAs to their regulatory target genes or interacting RNA-binding proteins(RBPs) remains technically challenging. Chemical modifications to mRNA also play important roles in regulating gene expression. Investigation of the functional roles of these modifications relies highly on the detection methods used. RNA structure is also critical at nearly every step of the RNA life cycle. In this review, we summarize recent advances and limitations in CLIP technologies and discuss the computational challenges of and bioinformatics tools used for decoding the functions and regulatory networks of ncRNAs. We also summarize methods used to detect RNA modifications and to probe RNA structure.  相似文献   
994.
A huge amount of information is stored in genomic DNA and this stored information resides inside the nucleus with the aid of chromosomal condensation factors. It has been reported that the repeat nucleosome core particle (NCP) consists of 147-bp of DNA and two copies of H2A, H2B, H3 and H4. Regulation of chromosomal structure is important to many processes inside the cell. In vivo, a group of histone chaperones facilitate and regulate nucleosome assembly. How NCPs are constructed with the aid of histone chaperones remains unclear. In this study, the histone chaperone-mediated nucleosome assembly process was investigated using single-molecule tethered particle motion (TPM) experiments. It was found that Asf1 is able to exert more influence than Nap1 and poly glutamate acid (PGA) on the nucleosome formation process, which highlights Asf1’s specific role in tetrasome formation. Thermodynamic parameters supported a model whereby energetically favored nucleosomal complexes compete with non-nucleosomal complexes. In addition, our kinetic findings propose the model that histone chaperones mediate nucleosome assembly along a path that leads to enthalpy-favored products with free histones as reaction substrates.  相似文献   
995.
Cellulose is an attractive feedstock for biofuel production because of its abundance, but the cellulose polymer is extremely stable and its constituent sugars are difficult to access. In nature, extracellular multi-enzyme complexes known as cellulosomes are among the most effective ways to transform cellulose to useable sugars. Cellulosomes consist of a diversity of secreted cellulases and other plant cell-wall degrading enzymes bound to a protein scaffold. These scaffold proteins have cohesin modules that bind conserved dockerin modules on the enzymes. It is thought that the localization of these diverse enzymes on the scaffold allows them to function synergistically. In order to understand and harness this synergy smaller, simplified cellulosomes have been constructed, expressed, and reconstituted using truncated cohesin-containing scaffolds.Here we show that an 18-subunit protein complex called a rosettasome can be genetically engineered to bind dockerin-containing enzymes and function like a cellulosome. Rosettasomes are thermostable, group II chaperonins from the hyperthermo-acidophilic archaeon Sulfolobus shibatae, which in the presence of ATP/Mg2+ assemble into 18-subunit, double-ring structures. We fused a cohesin module from Clostridium thermocellum to a circular permutant of a rosettasome subunit, and we demonstrate that the cohesin–rosettasomes: (1) bind dockerin-containing endo- and exo-gluconases, (2) the bound enzymes have increased cellulose-degrading activity compared to their activity free in solution, and (3) this increased activity depends on the number and ratio of the bound glucanases. We call these engineered multi-enzyme structures rosettazymes.  相似文献   
996.
Cancer-related genes harbored in the loss regions containing a high frequency of hepatocellular carcinoma (HCC) were selected.Related information was gathered and the coding single nucleotide polymorphism (cSNP) sequences were obtained from the single nucleotide polymorphism (SNP) database.The appropriate primers and oligonucleotide probes were then designed in accordance with the SNP sites,and subsequently,the gene chips for detecting SNPs were constructed.Genomic DNA was extracted from blood samples of healthy controls and from patients with HBV infection.The sequences,including the SNPs,were amplified via polymerase chain reaction (PCR) and labeled using digoxigenin deoxyuridine tri-phosphate (Dig-dUTP).The labeled products were then hybridized with the SNP chips.Results confirmed that the differences in allele frequencies of three SNPs EGFL3 (rs947345),Caspase9 (rs2308950),and E2F2 (rs3218171) were distinct between HBV-infected patients and controls,suggesting that these SNPs ocuring in high frequency in HBV-infected individuals may be associated with susceptibility to HCC.  相似文献   
997.
Vascular contractile hyporesponsiveness is an important mechanism underlying orthostatic intolerance after microgravity. Baroreceptor reflexes can modulate both pulmonary resistance and capacitance function and thus cardiac output. We hypothesized, therefore, that pulmonary vasoreactivity is impaired in the hindlimb-unweighted (HLU) rat model of microgravity. Pulmonary artery (PA) contractile responses to phenylephrine (PE) and U-46619 (U4) were significantly decreased in the PAs from HLU vs. control (C) animals. N(G)-nitro-L-arginine methyl ester (10(-5) M) enhanced the contractile responses in the PA rings from both C and HLU animals and completely abolished the differential responses to PE and U4 in HLU vs. C animals. Vasorelaxant responses to ACh were significantly enhanced in PA rings from HLU rats compared with C. Moreover, vasorelaxant responses to sodium nitroprusside were also significantly enhanced. Endothelial nitric oxide synthase (eNOS) and soluble guanlyl cyclase expression were significantly enhanced in PA and lung tissue from HLU rats. In marked contrast, the expression of inducible nitric oxide synthase was unchanged in lung tissue. These data support the hypothesis that vascular contractile responsiveness is attenuated in PAs from HLU rats and that this hyporesponsiveness is due at least in part to increased nitric oxide synthase activity resulting from enhanced eNOS expression. These findings may have important implications for blood volume distribution and attenuated stroke volume responses to orthostatic stress after microgravity exposure.  相似文献   
998.
999.
Similarities between age-related changes in the canine and human brain have resulted in the general acceptance of the canine brain as a model of human brain aging. The hippocampus is essentially required for intact cognitive ability and appears to be particularly vulnerable to the aging process. We observed changes in ionized calcium-binding adapter molecule 1 (Iba-1, a microglial marker) immunoreactivity and protein levels in the hippocampal dentate gyrus and CA1 region of adult (2-3 years) and aged (10-12 years) dogs. We also observed the interferon-gamma (IFN-gamma), a pro-inflammatory cytokine, protein levels in these groups. In the dentate gyrus and CA1 region of the adult dog, Iba-1 immunoreactive microglia were well distributed and their processes were highly ramified. However, in the aged dog, the processes of Iba-1 immunoreactive microglia were hypertrophied in the dentate gyrus. Moreover, Iba-1 protein level in the dentate gyrus in the aged dog was higher than in the adult dog. IFN-gamma expression was increased in the dentate gyrus homogenates of aged dogs than adult dogs. In addition, we found that some neurons were positive to Fluoro-Jade B (a marker for neuronal degeneration) in the dentate polymorphic layer, but not in the hippocampal CA1 region in the aged dog. These results suggest that Iba-1 immunoreactive microglia are hypertrophied in the dentate gyrus in the aged dog.  相似文献   
1000.
K A Lease  J Wen  J Li  J T Doke  E Liscum  J C Walker 《The Plant cell》2001,13(12):2631-2641
A genetic screen was performed to find new mutants with an erecta (er) phenotype and to identify genes that may function with ER, a receptor-like kinase. These mutants were named elk (for erecta-like) and were placed into five complementation groups. We positionally cloned ELK4 and determined that it encodes AGB1, a putative heterotrimeric G-protein beta subunit. Therefore, elk4 was renamed agb1. agb1-1 plants express similar fruit phenotypes, as seen in er plants, but differ from er in that the stem is only slightly shorter than that in the wild type, the pedicel is slightly longer than that in the wild type, and the leaves are rounder than those in er mutants. Molecular analysis of agb1-1 indicates that it is likely a null allele. AGB1 mRNA is expressed in all tissues tested but is highest in the silique. Analysis of agb1-1 er double mutants suggests that AGB1 may function in an ER developmental pathway regulating silique width but that it functions in parallel pathways affecting silique length as well as leaf and stem development. The finding that AGB1 is involved in the control of organ shape suggests that heterotrimeric G-protein signaling is a developmental regulator in Arabidopsis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号