首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51843篇
  免费   17470篇
  国内免费   2933篇
  2024年   71篇
  2023年   434篇
  2022年   1124篇
  2021年   1993篇
  2020年   3197篇
  2019年   4908篇
  2018年   4945篇
  2017年   4902篇
  2016年   5199篇
  2015年   5712篇
  2014年   5680篇
  2013年   6193篇
  2012年   4281篇
  2011年   3713篇
  2010年   4328篇
  2009年   2970篇
  2008年   2094篇
  2007年   1432篇
  2006年   1296篇
  2005年   1029篇
  2004年   921篇
  2003年   891篇
  2002年   774篇
  2001年   683篇
  2000年   543篇
  1999年   467篇
  1998年   259篇
  1997年   224篇
  1996年   211篇
  1995年   178篇
  1994年   144篇
  1993年   122篇
  1992年   173篇
  1991年   130篇
  1990年   113篇
  1989年   103篇
  1988年   90篇
  1987年   72篇
  1986年   55篇
  1985年   79篇
  1984年   53篇
  1983年   36篇
  1982年   41篇
  1981年   25篇
  1979年   24篇
  1978年   30篇
  1975年   21篇
  1974年   24篇
  1973年   24篇
  1971年   22篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
Concerns over the availability of honeybees (Apis mellifera L.) to meet pollination demands have elicited interest in alternative pollinators to mitigate pressures on the commercial beekeeping industry. The blue orchard bee, Osmia lignaria (Say), is a commercially available native bee that can be employed as a copollinator with, or alternative pollinator to, honeybees in orchards. To date, their successful implementation in agriculture has been limited by poor recovery of bee progeny for use during the next spring. This lack of reproductive success may be tied to an inadequate diversity and abundance of alternative floral resources during the foraging period. Managed, supplementary wildflower plantings may promote O. lignaria reproduction in California almond orchards. Three wildflower plantings were installed and maintained along orchard edges to supplement bee forage. Plantings were seeded with native wildflower species that overlapped with and extended beyond almond bloom. We measured bee visitation to planted wildflowers, bee reproduction, and progeny outcomes across orchard blocks at variable distances from wildflower plantings during 2015 and 2016. Pollen provision composition was also determined to confirm O. lignaria wildflower pollen use. Osmia lignaria were frequently observed visiting wildflower plantings during, and after, almond bloom. Most O. lignaria nesting occurred at orchard edges. The greatest recovery of progeny occurred along the orchard edges having the closest proximity (80 m) to managed wildflower plantings versus edges farther away. After almond bloom, O. lignaria nesting closest to the wildflower plantings collected 72% of their pollen from Phacelia spp., which supplied 96% of the managed floral area. Phacelia spp. pollen collection declined with distance from the plantings, but still reached 17% 800 m into the orchard. This study highlights the importance of landscape context and proximity to supplementary floral resources in promoting the propagation of solitary bees as alternative managed pollinators in commercial agriculture.  相似文献   
992.
Self‐incompatibility (SI) is the main mechanism that favors outcrossing in plants. By limiting compatible matings, SI interferes in fruit production and breeding of new cultivars. In the Oleeae tribe (Oleaceae), an unusual diallelic SI system (DSI) has been proposed for three distantly related species including the olive (Olea europaea), but empirical evidence has remained controversial for this latter. The olive domestication is a complex process with multiple origins. As a consequence, the mixing of S‐alleles from two distinct taxa, the possible artificial selection of self‐compatible mutants and the large phenological variation of blooming may constitute obstacles for deciphering SI in olive. Here, we investigate cross‐genotype compatibilities in the Saharan wild olive (O. e. subsp. laperrinei). As this taxon was geographically isolated for thousands of years, SI should not be affected by human selection. A population of 37 mature individuals maintained in a collection was investigated. Several embryos per mother were genotyped with microsatellites in order to identify compatible fathers that contributed to fertilization. While the pollination was limited by distance inside the collection, our results strongly support the DSI hypothesis, and all individuals were assigned to two incompatibility groups (G1 and G2). No self‐fertilization was observed in our conditions. In contrast, crosses between full or half siblings were frequent (ca. 45%), which is likely due to a nonrandom assortment of related trees in the collection. Finally, implications of our results for orchard management and the conservation of olive genetic resources are discussed.  相似文献   
993.
The sea otter (Enhydra lutris) is a marine mammal hunted to near extinction during the 1800s. Despite their well‐known modern importance as a keystone species, we know little about historical sea otter ecology. Here, we characterize the ecological niche of ancient southern sea otters (E. lutris nereis) using δ13C analysis and δ15N analysis of bones recovered from archaeological sites spanning ~7,000 to 350 years before present (N = 112 individuals) at five regions along the coast of California. These data are compared with previously published data on modern animals (N = 165) and potential modern prey items. In addition, we analyze the δ15N of individual amino acids for 23 individuals to test for differences in sea otter trophic ecology through time. After correcting for tissue‐specific and temporal isotopic effects, we employ nonparametric statistics and Bayesian niche models to quantify differences among ancient and modern animals. We find ancient otters occupied a larger isotopic niche than nearly all modern localities; likely reflecting broader habitat and prey use in prefur trade populations. In addition, ancient sea otters at the most southerly sites occupied an isotopic niche that was more than twice as large as ancient otters from northerly regions. This likely reflects greater invertebrate prey diversity in southern California relative to northern California. Thus, we suggest the potential dietary niche of sea otters in southern California could be larger than in central and northern California. At two sites, Año Nuevo and Monterey Bay, ancient otters had significantly higher δ15N values than modern populations. Amino acid δ15N data indicated this resulted from shifting baseline isotope values, rather than a change in sea otter trophic ecology. Our results help in better understanding the contemporary ecological role of sea otters and exemplify the strength of combing zooarchaeological and biological information to provide baseline data for conservation efforts.  相似文献   
994.
Many ephemeral mudflat species, which rely on a soil seed bank to build up the next generation, are endangered in their natural habitat due to the widespread regulation of rivers. The aim of the present study was to elucidate the role of the soil seed bank and dispersal for the maintenance of genetic diversity in populations of near‐natural river habitats and anthropogenic habitats created by traditional fish farming practices using Cyperus fuscus as a model. Using microsatellite markers, we found no difference in genetic diversity levels between soil seed bank and above‐ground population and only moderate differentiation between the two fractions. One possible interpretation is the difference in short‐term selection during germination under specific conditions (glasshouse versus field) resulting in an ecological filtering of genotypes out of the reservoir in the soil. River populations harbored significantly more genetic diversity than populations from the anthropogenic pond types. We suggest that altered levels and patterns of dispersal together with stronger selection pressures and historical bottlenecks in anthropogenic habitats are responsible for the observed reduction in genetic diversity. Dispersal is also supposed to largely prohibit genetic structure across Europe, although there is a gradient in private allelic richness from southern Europe (high values) to northern, especially north‐western, Europe (low values), which probably relates to postglacial expansion out of southern and/or eastern refugia.  相似文献   
995.
Myriophyllum, among the most species‐rich genera of aquatic angiosperms with ca. 68 species, is an extensively distributed hydrophyte lineage in the cosmopolitan family Haloragaceae. The chloroplast (cp) genome is useful in the study of genetic evolution, phylogenetic analysis, and molecular dating of controversial taxa. Here, we sequenced and assembled the whole chloroplast genome of Myriophyllum spicatum L. and compared it to other species in the order Saxifragales. The complete chloroplast genome sequence of M. spicatum is 158,858 bp long and displays a quadripartite structure with two inverted repeats (IR) separating the large single copy (LSC) region from the small single copy (SSC) region. Based on sequence identification and the phylogenetic analysis, a 4‐kb phylogenetically informative inversion between trnE‐trnC in Myriophyllum was determined, and we have placed this inversion on a lineage specific to Myriophyllum and its close relatives. The divergence time estimation suggested that the trnE‐trnC inversion possibly occurred between the upper Cretaceous (72.54 MYA) and middle Eocene (47.28 MYA) before the divergence of Myriophyllum from its most recent common ancestor. The unique 4‐kb inversion might be caused by an occurrence of nonrandom recombination associated with climate changes around the K‐Pg boundary, making it interesting for future evolutionary investigations.  相似文献   
996.
Population connectivity is driven by individual dispersal potential and modulated by natal philopatry. In seabirds, high vagility facilitates dispersal yet philopatry is also common, with foraging area overlap often correlated with population connectivity. We assess the interplay between these processes by studying past and current connectivity and foraging niche overlap among southern rockhopper penguin colonies of the coast of southern South America using genomic and stable isotope analyses. We found two distinct genetic clusters and detected low admixture between northern and southern colonies. Stable isotope analysis indicated niche variability between colonies, with Malvinas/Falklands colonies encompassing the species entire isotopic foraging niche, while the remaining colonies had smaller, nonoverlapping niches. A recently founded colony in continental Patagonia differed in isotopic niche width and position with Malvinas/Falklands colonies, its genetically identified founder population, suggesting the exploitation of novel foraging areas and/or prey items. Additionally, dispersing individuals found dead across the Patagonian shore in an unusual mortality event were also assigned to the northern cluster, suggesting northern individuals reach southern localities, but do not breed in these colonies. Facilitated by variability in foraging strategies, and especially during unfavorable conditions, the number of dispersing individuals may increase and enhance the probability of founding new colonies. Metapopulation demographic dynamics in seabirds should account for interannual variability in dispersal behavior and pay special attention to extreme climatic events, classically related to negative effects on population trends.  相似文献   
997.
Mass loss and nutrient release during litter decomposition drive biogeochemical cycling in terrestrial ecosystems. However, the relationship between the litter decomposition process and the decomposition stage, precipitation, and litter quality has rarely been addressed, precluding our understanding of how litter decomposition regulates nutrient cycling in various ecosystems and their responses to climate change. In this study, we measured mass loss as well as carbon and nutrient releases during the decomposition of 16 types of leaf litter under three precipitation treatments over 12 months in a common garden experiment (i.e., using standardized soil and climatic conditions). Sixteen types of leaves were divided into three functional groups (evergreen, deciduous, and herbaceous). The objectives were to understand the effects of decomposition stages and precipitation regimes on litter decomposition and to examine the relationship between this effect and chemical properties. The mass loss and release of nitrogen and potassium were significantly higher in the 6‐ to 12‐month stage of decomposition (high temperature and humidity) than in the 0‐ to 6‐month stage. Phosphorus was relatively enriched in evergreen leaves after 6 months of decomposition. The rates of mass loss and nutrient release were significantly greater in herbaceous than in deciduous and evergreen leaves. Increasing precipitation from 400 to 800 mm accelerated mass loss and potassium release but decreased phosphorus release in the 0‐ to 6‐month stage of decomposition. These results highlighted the contribution to and complexity of litter chemical properties in litter decomposition.  相似文献   
998.
Predicting the consequences of environmental changes, including human‐mediated climate change on species, requires that we quantify range‐wide patterns of genetic diversity and identify the ecological, environmental, and historical factors that have contributed to it. Here, we generate baseline data on polar bear population structure across most Canadian subpopulations (n = 358) using 13,488 genome‐wide single nucleotide polymorphisms (SNPs) identified with double‐digest restriction site‐associated DNA sequencing (ddRAD). Our ddRAD dataset showed three genetic clusters in the sampled Canadian range, congruent with previous studies based on microsatellites across the same regions; however, due to a lack of sampling in Norwegian Bay, we were unable to confirm the existence of a unique cluster in that subpopulation. These data on the genetic structure of polar bears using SNPs provide a detailed baseline against which future shifts in population structure can be assessed, and opportunities to develop new noninvasive tools for monitoring polar bears across their range.  相似文献   
999.
It is unclear how historical adaptation versus maladaptation in a prior environment affects population evolvability in a novel habitat. Prior work showed that vesicular stomatitis virus (VSV) populations evolved at constant 37°C improved in cellular infection at both 29°C and 37°C; in contrast, those evolved under random changing temperatures between 29°C and 37°C failed to improve. Here, we tested whether prior evolution affected the rate of adaptation at the thermal‐niche edge: 40°C. After 40 virus generations in the new environment, we observed that populations historically evolved at random temperatures showed greater adaptability. Deep sequencing revealed that most of the newly evolved mutations were de novo. Also, two novel evolved mutations in the VSV glycoprotein and replicase genes tended to co‐occur in the populations previously evolved at constant 37°C, whereas this parallelism was not seen in populations with prior random temperature evolution. These results suggest that prior adaptation under constant versus random temperatures constrained the mutation landscape that could improve fitness in the novel 40°C environment, perhaps owing to differing epistatic effects of new mutations entering genetic architectures that earlier diverged. We concluded that RNA viruses maladapted to their previous environment could “leapfrog” over counterparts of higher fitness, to achieve faster adaptability in a novel environment.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号