首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3207篇
  免费   347篇
  2023年   11篇
  2021年   74篇
  2020年   43篇
  2019年   47篇
  2018年   52篇
  2017年   40篇
  2016年   88篇
  2015年   141篇
  2014年   148篇
  2013年   198篇
  2012年   270篇
  2011年   250篇
  2010年   154篇
  2009年   142篇
  2008年   205篇
  2007年   205篇
  2006年   188篇
  2005年   187篇
  2004年   166篇
  2003年   158篇
  2002年   114篇
  2001年   53篇
  2000年   46篇
  1999年   38篇
  1998年   24篇
  1997年   18篇
  1996年   17篇
  1995年   11篇
  1994年   16篇
  1993年   19篇
  1992年   18篇
  1991年   18篇
  1990年   32篇
  1989年   19篇
  1988年   17篇
  1987年   26篇
  1986年   15篇
  1985年   17篇
  1984年   21篇
  1983年   15篇
  1982年   15篇
  1981年   20篇
  1980年   12篇
  1979年   13篇
  1978年   11篇
  1977年   9篇
  1976年   11篇
  1975年   17篇
  1971年   12篇
  1970年   18篇
排序方式: 共有3554条查询结果,搜索用时 15 毫秒
131.
Background aimsAllogeneic hematopoietic stem cell transplantation is curative for sickle cell disease, and the use of matched related donors, non-myeloablative conditioning and sirolimus immunosuppression results in stable mixed chimerism without graft-versus-host disease (GVHD). However, the time to terminate sirolimus while maintaining mixed chimerism is unclear.MethodsIn this study, we developed a two-way mixed lymphocyte reaction (MLR) to evaluate ex vivo immunoreaction in mixed chimeric patients.ResultsIn co-culture of peripheral blood mononuclear cells (PBMCs) from two healthy controls (without irradiation), we detected proliferation at various ratios of PBMC mixtures (1:9 to 9:1) as well as various concentrations of sirolimus, suggesting that two-way MLR is applicable to patients (having >10% chimerism) undergoing sirolimus treatment. In two-way MLR using PBMCs (including donor and recipient cells) from mixed chimeric patients (n = 28), greater ex vivo proliferation was observed <6 months compared with >6 months post-transplant and healthy control PBMC monoculture. Robust ex vivo proliferation was observed in a patient with acute GVHD, and persistent ex vivo proliferation (until 2 years) was observed in a patient with decreasing donor chimerism.ConclusionsIn summary, we demonstrated that in two-way MLR, ex vivo immunoreaction decreases to low levels ~6 months post-transplant. These findings suggest a rationale to continue immunosuppression for 6 months.  相似文献   
132.
133.
134.
135.
136.
The 1,029 series of mammary epithelial cell lines (D6, GP+E, r3 and r3T) are progressively more transformed: the latter two by val(12)ras. These cell lines respond to TGFbeta by undergoing early events of epithelial-mesenchymal transition (EMT), including morphological changes and redistribution of E-cadherin. Tumors formed by r3T cells in the choroid of the eye express vimentin, a late marker of EMT, possibly in response to TGFbeta. In vitro, vimentin expression is induced in all the cell lines by TGFbeta treatment, whereas cytokeratin expression is only slightly affected. Surprisingly, ras transformation results in a 10-fold suppression of vimentin expression. Neither suppression of vimentin by ras transformation nor induction by TGFbeta is mediated by the vimentin promoter in r3T cells. In transient transfection assays, several human vimentin promoter constructs are more active in the low-expressing r3T cell line than in the vimentin-expressing mesenchymal cell line NIH3T3. In the r3T cells, there is no effect of TGFbeta treatment for 9 days on the activity of either promoter. Azacytidine treatment does not affect vimentin expression in either NIH3T3 or r3T, suggesting that promoter methylation is not the mechanism of suppression by ras. Finally, the half-life of the vimentin mRNA is similar in both the r3T cells and NIH3T3 cells. We conclude that the suppression of vimentin expression by ras, and the relief of this suppression by TGFbeta, occurs in a promoter-independent fashion, possibly through sequences in the first or second intron.  相似文献   
137.
The cytochrome bc1 complex is a dimeric enzyme of the inner mitochondrial membrane that links electron transfer from ubiquinol to cytochrome c by a protonmotive Q cycle mechanism in which ubiquinol is oxidized at one center in the enzyme, referred to as center P, and ubiquinone is rereduced at a second center, referred to as center N. To better understand the mechanism of ubiquinol oxidation, we have examined catalytic activities and pre-steady-state reduction kinetics of yeast cytochrome bc1 complexes with mutations in cytochrome b that we expected would affect oxidation of ubiquinol. We mutated two residues thought to be involved in proton conduction linked to ubiquinol oxidation, Tyr132 and Glu272, and two residues proposed to be involved in docking ubiquinol into the center P pocket, Phe129 and Tyr279. Substitution of Phe129 by lysine or arginine yielded a respiration-deficient phenotype and lipid-dependent catalytic activity. Increased bypass reactions were detectable for both variants, with F129K showing the more severe effects. Substitution with lysine leads to a disturbed coordination of a b heme as deduced from changes in the midpoint potential and the EPR signature. Removal of the aromatic side chain in position Tyr279 lowers the catalytic activity accompanied by a low level of bypass reactions. Pre-steady-state kinetics of the enzymes modified at Glu272 and Tyr132 confirmed the importance of their functional groups for electron transfer. Altered center N kinetics and activation of ubiquinol oxidation by binding of cytochrome c in the Y132F and E272D enzymes indicate long range effects of these mutations.  相似文献   
138.
Objective: Obesity has been proposed to negatively impact cardiac function in overweight (OW) individuals. The relationship between diastolic dysfunction and oxygen uptake (V?o 2) kinetics is equivocal. This exploratory investigation evaluated the relationship between resting left ventricular function and V?o 2 kinetics during cycle ergometry in OW and non‐overweight (NO) children and adolescents. Research Methods and Procedures: Fourteen OW (>85 percentile for BMI for age and gender) children, 10 boys and 4 girls (age, 11.7 ± 1.9 years; body mass, 80.6 ± 45.5 kg) and 10 NO children (4 boys, 6 girls) volunteered to participate in the study (age, 12.5 ± 2.1 years; body mass, 45.8 ± 13.8 kg). Resting cardiovascular structure and function were assessed using spectral Doppler echocardiography. All subjects underwent two sub‐maximal exercise stages on a cycle ergometer (3 minutes unloaded and 5 minutes at 50 W, both at a cadence of 50 rpm). Respiratory data were measured on a breath‐by‐breath basis at both workloads and the mean response time (MRT) was calculated. Results: Analysis of the MRT data demonstrated that there were no significant differences between OW and NO (OW, 52.6 ± 11.7 seconds vs. NO, 45.6 ± 7.4 seconds). Significant correlations (p < 0.05) were obtained between MRT V?o 2 and echocardiographic‐derived mitral valve inflow pressure half‐time (r = 0.55) and between MRT V?o 2, and mitral valve inflow deceleration time (r = 0.55). Discussion: The evidence from this research suggests a possible link between left ventricular diastolic function at rest and oxygen uptake kinetics during sub‐maximal exercise in OW and NO children and adolescents.  相似文献   
139.
Rich T  Varadaraj A 《PloS one》2007,2(10):e1014
Intranuclear inclusion bodies (IBs) are the histopathologic markers of multiple protein folding diseases. IB formation has been extensively studied using fluorescent fusion products of pathogenic polyglutamine (polyQ) expressing proteins. These studies have been informative in determining the cellular targets of expanded polyQ protein as well as the methods by which cells rid themselves of IBs. The experimental thrust has been to intervene in the process of polyQ aggregation in an attempt to alleviate cytotoxicity. However new data argues against the notion that polyQ aggregation and cytotoxicity are inextricably linked processes. We reasoned that changing the protein context of a disease causing polyQ protein could accelerate its precipitation as an IB, potentially reducing its cytotoxicity. Our experimental strategy simply exploited the fact that conjoined proteins influence each others folding and aggregation properties. We fused a full-length pathogenic ataxin-1 construct to fluorescent tags (GFP and DsRed1-E5) that exist at different oligomeric states. The spectral properties of the DsRed1-E5-ataxin-1 transfectants had the additional advantage of allowing us to correlate fluorochrome maturation with cytotoxicity. Each fusion protein expressed a distinct cytotoxicity and IB morphology. Flow cytometric analyses of transfectants expressing the greatest fluorescent signals revealed that the DsRed1-E5-ataxin-1 fusion was more toxic than GFP fused ataxin-1 (31.8+/-4.5% cell death versus 12.85+/-3%), although co-transfection with the GFP fusion inhibited maturation of the DsRed1-E5 fluorochrome and diminished the toxicity of the DsRed1-E5-ataxin-1 fusion. These data show that polyQ driven aggregation can be influenced by fusion partners to generate species with different toxic properties and provide new opportunities to study IB aggregation, maturation and lethality.  相似文献   
140.
After ligand binding and endocytosis, cell surface receptors can continue to signal from endosomal compartments until sequestered from the cytoplasm. An important mechanism for receptor downregulation in vivo is via the inward budding of receptors into intralumenal vesicles to form specialized endosomes called multivesicular bodies (MVBs) that subsequently fuse with lysosomes, degrading their cargo. This process requires four heterooligomeric protein complexes collectively termed the ESCRT machinery. In yeast, ESCRT-I is a heterotetrameric complex comprised of three conserved subunits and a fourth subunit for which identifiable metazoan homologs were lacking. Using C. elegans, we identify MVB-12, a fourth metazoan ESCRT-I subunit. Depletion of MVB-12 slows the kinetics of receptor downregulation in vivo, but to a lesser extent than inhibition of other ESCRT-I subunits. Consistent with these findings, targeting of MVB-12 to membranes requires the other ESCRT-I subunits, but MVB-12 is not required to target the remaining ESCRT-I components. Both endogenous and recombinant ESCRT-I are stable complexes with a 1:1:1:1 subunit stoichiometry. MVB-12 has two human homologs that co-localize and co-immunoprecipitate with the ESCRT-I component TSG101. Thus, MVB-12 is a conserved core component of metazoan ESCRT-I that regulates its activity during MVB biogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号