首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3593篇
  免费   413篇
  2022年   32篇
  2021年   81篇
  2020年   48篇
  2019年   48篇
  2018年   59篇
  2017年   54篇
  2016年   97篇
  2015年   150篇
  2014年   152篇
  2013年   238篇
  2012年   286篇
  2011年   268篇
  2010年   174篇
  2009年   139篇
  2008年   207篇
  2007年   214篇
  2006年   220篇
  2005年   186篇
  2004年   155篇
  2003年   152篇
  2002年   141篇
  2001年   71篇
  2000年   62篇
  1999年   58篇
  1998年   38篇
  1997年   29篇
  1996年   29篇
  1995年   22篇
  1994年   27篇
  1993年   27篇
  1992年   37篇
  1991年   35篇
  1990年   27篇
  1989年   26篇
  1988年   32篇
  1987年   28篇
  1986年   18篇
  1985年   21篇
  1984年   29篇
  1982年   27篇
  1981年   14篇
  1980年   16篇
  1979年   17篇
  1978年   15篇
  1977年   19篇
  1975年   15篇
  1974年   17篇
  1973年   18篇
  1972年   15篇
  1970年   14篇
排序方式: 共有4006条查询结果,搜索用时 0 毫秒
991.
Abscisic acid (ABA) mediates resistance to abiotic stress and controls developmental processes in plants. The group‐A PP2Cs, of which ABI1 is the prototypical member, are protein phosphatases that play critical roles as negative regulators very early in ABA signal transduction. Because redundancy is thought to limit the genetic dissection of early ABA signalling, to identify redundant and early ABA signalling proteins, we pursued a proteomics approach. We generated YFP‐tagged ABI1 Arabidopsis expression lines and identified in vivo ABI1‐interacting proteins by mass‐spectrometric analyses of ABI1 complexes. Known ABA signalling components were isolated including SnRK2 protein kinases. We confirm previous studies in yeast and now show that ABI1 interacts with the ABA‐signalling kinases OST1, SnRK2.2 and SnRK2.3 in plants. Interestingly, the most robust in planta ABI1‐interacting proteins in all LC‐MS/MS experiments were nine of the 14 PYR/PYL/RCAR proteins, which were recently reported as ABA‐binding signal transduction proteins, providing evidence for in vivo PYR/PYL/RCAR interactions with ABI1 in Arabidopsis. ABI1–PYR1 interaction was stimulated within 5 min of ABA treatment in Arabidopsis. Interestingly, in contrast, PYR1 and SnRK2.3 co‐immunoprecipitated equally well in the presence and absence of ABA. To investigate the biological relevance of the PYR/PYLs, we analysed pyr1/pyl1/pyl2/pyl4 quadruple mutant plants and found strong insensitivities in ABA‐induced stomatal closure and ABA‐inhibition of stomatal opening. These findings demonstrate that ABI1 can interact with several PYR/PYL/RCAR family members in Arabidopsis, that PYR1–ABI1 interaction is rapidly stimulated by ABA in Arabidopsis and indicate new SnRK2 kinase‐PYR/PYL/RCAR interactions in an emerging model for PYR/PYL/RCAR‐mediated ABA signalling.  相似文献   
992.
Triosephosphate isomerase (TIM), glycerol 3-phosphate dehydrogenase, and orotidine 5'-monophosphate decarboxylase each use the binding energy from the interaction of phosphite dianion with a flexible phosphate gripper loop to activate a second, phosphodianion-truncated, substrate towards enzyme-catalyzed proton transfer, hydride transfer, and decarboxylation, respectively. Studies on TIM suggest that the most important general effect of loop closure over the substrate phosphodianion, and the associated conformational changes, is to extrude water from the enzyme active site. This should cause a decrease in the effective active-site dielectric constant, and an increase in transition state stabilization from enhanced electrostatic interactions with polar amino acid side chains. The most important specific effect of these conformational changes is to increase the basicity of the carboxylate side chain of the active site glutamate base by its placement in a 'hydrophobic cage'.  相似文献   
993.
Long-distance transport of nitrate requires xylem loading and unloading, a successive process that determines nitrate distribution and subsequent assimilation efficiency. Here, we report the functional characterization of NRT1.8, a member of the nitrate transporter (NRT1) family in Arabidopsis thaliana. NRT1.8 is upregulated by nitrate. Histochemical analysis using promoter-β-glucuronidase fusions, as well as in situ hybridization, showed that NRT1.8 is expressed predominantly in xylem parenchyma cells within the vasculature. Transient expression of the NRT1.8:enhanced green fluorescent protein fusion in onion epidermal cells and Arabidopsis protoplasts indicated that NRT1.8 is plasma membrane localized. Electrophysiological and nitrate uptake analyses using Xenopus laevis oocytes showed that NRT1.8 mediates low-affinity nitrate uptake. Functional disruption of NRT1.8 significantly increased the nitrate concentration in xylem sap. These data together suggest that NRT1.8 functions to remove nitrate from xylem vessels. Interestingly, NRT1.8 was the only nitrate assimilatory pathway gene that was strongly upregulated by cadmium (Cd2+) stress in roots, and the nrt1.8-1 mutant showed a nitrate-dependent Cd2+-sensitive phenotype. Further analyses showed that Cd2+ stress increases the proportion of nitrate allocated to wild-type roots compared with the nrt1.8-1 mutant. These data suggest that NRT1.8-regulated nitrate distribution plays an important role in Cd2+ tolerance.  相似文献   
994.
The kink-turn (k-turn) is a common structural motif in RNA that introduces a tight kink into the helical axis. k-turns play an important architectural role in RNA structures and serve as binding sites for a number of proteins. We have created a database of known and postulated k-turn sequences and three-dimensional (3D) structures, available via the internet. This site provides (1) a database of sequence and structure, as a resource for the RNA community, and (2) a tool to enable the manipulation and comparison of 3D structures where known.  相似文献   
995.

Background  

Bone morphogenetic proteins (BMPs) are members of the conserved transforming growth factor β (TGFβ superfamily, and play many developmental and homeostatic roles. In C. elegans, a BMP-like pathway, the DBL-1 pathway, controls body size and is involved in innate immunity. How these functions are carried out, though, and what most of the downstream targets of this pathway are, remain unknown.  相似文献   
996.
N-Methyl-d-aspartate (NMDA) receptors are expressed at excitatory synapses throughout the brain and are essential for neuronal development and synaptic plasticity. Functional NMDA receptors are tetramers, typically composed of NR1 and NR2 subunits (NR2A–D). NR2A and NR2B are expressed in the forebrain and are thought to assemble as diheteromers (NR1/NR2A, NR1/NR2B) and triheteromers (NR1/NR2A/NR2B). NR2A and NR2B contain cytosolic domains that regulate distinct postendocytic sorting events, with NR2A sorting predominantly into the degradation pathway, and NR2B preferentially trafficking through the recycling pathway. However, the interplay between these two subunits remains an open question. We have now developed a novel approach based on the dimeric feature of the α- and β-chains of the human major histocompatibility complex class II molecule. We created chimeras of α- and β-chains with the NR2A and NR2B C termini and evaluated endocytosis of dimers. Like chimeric proteins containing only a single NR2A or NR2B C-terminal domain, major histocompatibility complex class II-NR2A homodimers sort predominantly to late endosomes, whereas NR2B homodimers traffic to recycling endosomes. Interestingly, NR2A/NR2B heterodimers traffic preferentially through the recycling pathway, and NR2B is dominant in regulating dimer trafficking in both heterologous cells and neurons. In addition, the recycling of NR2B-containing NMDARs in wild-type neurons is not significantly different from NR2A−/− neurons. These data support a dominant role for NR2B in regulating the trafficking of triheteromeric NMDARs in vivo. Furthermore, our molecular approach allows for the direct and selective evaluation of dimeric assemblies and can be used to define dominant trafficking domains in other multisubunit protein complexes.  相似文献   
997.
Adenosine 5'-triphosphate is a universal molecule in all living cells, where it functions in bioenergetics and cell signaling. To understand how the concentration of ATP is regulated by cell metabolism and in turn how it regulates the activities of enzymes in the cell it would be beneficial if we could measure ATP concentration in the intact cell in real time. Using a novel aptamer-based ATP nanosensor, which can readily monitor intracellular ATP in eukaryotic cells with a time resolution of seconds, we have performed the first on-line measurements of the intracellular concentration of ATP in the yeast Saccharomyces cerevisiae. These ATP measurements show that the ATP concentration in the yeast cell is not stationary. In addition to an oscillating ATP concentration, we also observe that the concentration is high in the starved cells and starts to decrease when glycolysis is induced. The decrease in ATP concentration is shown to be caused by the activity of membrane-bound ATPases such as the mitochondrial F(0)F(1) ATPase-hydrolyzing ATP and the plasma membrane ATPase (PMA1). The activity of these two ATPases are under strict control by the glucose concentration in the cell. Finally, the measurements of intracellular ATP suggest that 2-deoxyglucose (2-DG) may have more complex function than just a catabolic block. Surprisingly, addition of 2-DG induces only a moderate decline in ATP. Furthermore, our results suggest that 2-DG may inhibit the activation of PMA1 after addition of glucose.  相似文献   
998.
Obesity and the metabolic syndrome represent serious health threats affecting increasing numbers of individuals, with females being more affected than males and with growing incidence among children and adolescents. In the present study, we used the OLETF rat model of early-onset obesity to examine the influence of different timing of food restriction on long-term obesity levels in females. Food restriction took place at different time windows: from weaning until postnatal day (PND) 45 (early); from weaning until PND90 (chronic); or from PND45 until PND70 (late). Follow-up continued until PND90. During and after the termination of the diet-restriction period, we focused on peripheral adiposity-related measures such as fat pad weight (brown, retroperitoneal and inguinal); inguinal adipocyte size and number; and leptin, oxytocin and glucose levels. We also examined body weight, feeding efficiency, spontaneous intake after release from diet-restriction, and plasma creatinine levels and estrous cycle characteristics as a result of the chronic diet. The results suggest that while food restriction produced significant weight and adiposity loss, OLETF females presented poor weight loss retention after the early and late short-term diets. The estrous cycle structure and time of first estrous of the OLETF rats were normalized by chronic food restriction. Females responded to early food restriction in a different manner than males did in previous studies, further emphasizing the importance of sex-appropriate approaches in the investigation and treatment of the pathologies related to obesity and the metabolic syndrome.  相似文献   
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号