全文获取类型
收费全文 | 2048篇 |
免费 | 201篇 |
专业分类
2249篇 |
出版年
2024年 | 4篇 |
2023年 | 13篇 |
2022年 | 24篇 |
2021年 | 58篇 |
2020年 | 39篇 |
2019年 | 34篇 |
2018年 | 40篇 |
2017年 | 32篇 |
2016年 | 69篇 |
2015年 | 109篇 |
2014年 | 108篇 |
2013年 | 150篇 |
2012年 | 193篇 |
2011年 | 176篇 |
2010年 | 111篇 |
2009年 | 97篇 |
2008年 | 144篇 |
2007年 | 141篇 |
2006年 | 134篇 |
2005年 | 126篇 |
2004年 | 105篇 |
2003年 | 99篇 |
2002年 | 77篇 |
2001年 | 14篇 |
2000年 | 14篇 |
1999年 | 16篇 |
1998年 | 19篇 |
1997年 | 8篇 |
1996年 | 9篇 |
1995年 | 7篇 |
1994年 | 11篇 |
1993年 | 9篇 |
1992年 | 6篇 |
1991年 | 6篇 |
1990年 | 2篇 |
1989年 | 1篇 |
1988年 | 4篇 |
1987年 | 8篇 |
1986年 | 4篇 |
1985年 | 3篇 |
1984年 | 6篇 |
1983年 | 4篇 |
1982年 | 3篇 |
1981年 | 5篇 |
1980年 | 1篇 |
1979年 | 1篇 |
1977年 | 1篇 |
1975年 | 2篇 |
1974年 | 1篇 |
1971年 | 1篇 |
排序方式: 共有2249条查询结果,搜索用时 15 毫秒
101.
Bi Y Stuelten CH Kilts T Wadhwa S Iozzo RV Robey PG Chen XD Young MF 《The Journal of biological chemistry》2005,280(34):30481-30489
Extracellular matrix glycoproteins and proteoglycans bind a variety of growth factors and cytokines thereby regulating matrix assembly as well as bone formation. However, little is known about the mechanisms by which extracellular matrix molecules modulate osteogenic stem cells and bone formation. Using mice deficient in two members of the small leucine-rich proteoglycans, biglycan and decorin, we uncovered a role for these two extracellular matrix proteoglycans in modulating bone formation from bone marrow stromal cells. Our studies showed that the absence of the critical transforming growth factor-beta (TGF-beta)-binding proteoglycans, biglycan and decorin, prevents TGF-beta from proper sequestration within the extracellular matrix. The excess TGF-beta directly binds to its receptors on bone marrow stromal cells and overactivates its signaling transduction pathway. Overall, the predominant effect of the increased TGF-beta signaling in bgn/dcn-deficient bone marrow stromal cells is a "switch in fate" from growth to apoptosis, leading to decreased numbers of osteoprogenitor cells and subsequently reduced bone formation. Thus, biglycan and decorin appear to be essential for maintaining an appropriate number of mature osteoblasts by modulating the proliferation and survival of bone marrow stromal cells. These findings underscore the importance of the micro-environment in controlling the fate of adult stem cells and reveal a novel cellular and molecular basis for the physiological and pathological control of bone mass. 相似文献
102.
Christopher B. Cooper Edward J. Beard lvaro Vzquez‐Mayagoitia Liliana Stan Gavin B. G. Stenning Daniel W. Nye Julian A. Vigil Tina Tomar Jingwen Jia Govardhana B. Bodedla Song Chen Lucía Gallego Santiago Franco Antonio Carella K. R. Justin Thomas Song Xue Xunjin Zhu Jacqueline M. Cole 《Liver Transplantation》2019,9(5)
Data‐driven materials discovery has become increasingly important in identifying materials that exhibit specific, desirable properties from a vast chemical search space. Synergic prediction and experimental validation are needed to accelerate scientific advances related to critical societal applications. A design‐to‐device study that uses high‐throughput screens with algorithmic encodings of structure–property relationships is reported to identify new materials with panchromatic optical absorption, whose photovoltaic device applications are then experimentally verified. The data‐mining methods source 9431 dye candidates, which are auto‐generated from the literature using a custom text‐mining tool. These candidates are sifted via a data‐mining workflow that is tailored to identify optimal combinations of organic dyes that have complementary optical absorption properties such that they can harvest all available sunlight when acting as co‐sensitizers for dye‐sensitized solar cells (DSSCs). Six promising dye combinations are shortlisted for device testing, whereupon one dye combination yields co‐sensitized DSSCs with power conversion efficiencies comparable to those of the high‐performance, organometallic dye, N719. These results demonstrate how data‐driven molecular engineering can accelerate materials discovery for panchromatic photovoltaic or other applications. 相似文献
103.
104.
Tina Christmann Bruno H. P. Rosado Guillaume Delhaye Ilaíne S. Matos Julia S. Drummond Helena L. Roland Yan C. Moraes Imma Oliveras Menor 《Ecology and evolution》2021,11(15):10164
AimsAmidst the Campos de Altitude (Highland Grasslands) in the Brazilian Atlantic Forest, woody communities grow either clustered in tree islands or interspersed within the herbaceous matrix. The functional ecology, diversity, and biotic processes shaping these plant communities are largely unstudied. We characterized the functional assembly and diversity of these tropical montane woody communities and investigated how they fit within Grime''s CSR (C—competitor, S—stress‐tolerant, R—ruderal) scheme, what functional trade‐offs they exhibit, and how traits and functional diversity vary in response to bamboo presence/absence.MethodsTo characterize the functional composition of the community, we sampled five leaf traits and wood density along transects covering the woody communities both inside tree islands and outside (i.e., isolated woody plants in the grasslands community). Then, we used Mann–Whitney test, t test, and variation partitioning to determine the effects of inside versus outside tree island and bamboo presence on community‐weighted means, woody species diversity, and functional diversity.ResultsWe found a general SC/S strategy with drought‐related functional trade‐offs. Woody plants in tree islands had more acquisitive traits than those within the grasslands. Trait variation was mostly taxonomically than spatially driven, and species composition varied between inside and outside tree islands. Leaf thickness, wood density, and foliar water uptake were unrelated to CSR strategies, suggesting independent trait dimensions and multiple drought‐coping strategies within the predominant S strategy. Islands with bamboo presence showed lower Simpson diversity, lower functional dispersion, lower foliar water uptake, and greater leaf thickness than in tree islands without bamboo.ConclusionsThe observed functional assembly hints toward large‐scale environmental abiotic filtering shaping a stress‐tolerant community strategy, and small‐scale biotic interactions driving small‐scale trait variation. We recommend experimental studies with fire, facilitation treatments, ecophysiological and recruitment traits to elucidate on future tree island expansion and community response to climate change. 相似文献
105.
Lili Du Zhan-Guo Gao Silvia Paoletta Tina C. Wan Elizabeth T. Gizewski Samantha Barbour Jacobus P. D. van Veldhoven Adriaan P. IJzerman Kenneth A. Jacobson John A. Auchampach 《Purinergic signalling》2018,14(1):59-71
Activity of the A3 adenosine receptor (AR) allosteric modulators LUF6000 (2-cyclohexyl-N-(3,4-dichlorophenyl)-1H-imidazo [4,5-c]quinolin-4-amine) and LUF6096 (N-{2-[(3,4-dichlorophenyl)amino]quinolin-4-yl}cyclohexanecarbox-amide) was compared at four A3AR species homologs used in preclinical drug development. In guanosine 5′-[γ-[35S]thio]triphosphate ([35S]GTPγS) binding assays with cell membranes isolated from human embryonic kidney cells stably expressing recombinant A3ARs, both modulators substantially enhanced agonist efficacy at human, dog, and rabbit A3ARs but provided only weak activity at mouse A3ARs. For human, dog, and rabbit, both modulators increased the maximal efficacy of the A3AR agonist 2-chloro-N 6-(3-iodobenzyl)adenosine-5′-N-methylcarboxamide as well as adenosine > 2-fold, while slightly reducing potency in human and dog. Based on results from N 6-(4-amino-3-[125I]iodobenzyl)adenosine-5′-N-methylcarboxamide ([125I]I-AB-MECA) binding assays, we hypothesize that potency reduction is explained by an allosterically induced slowing in orthosteric ligand binding kinetics that reduces the rate of formation of ligand-receptor complexes. Mutation of four amino acid residues of the human A3AR to the murine sequence identified the extracellular loop 1 (EL1) region as being important in selectively controlling the allosteric actions of LUF6096 on [125I]I-AB-MECA binding kinetics. Homology modeling suggested interaction between species-variable EL1 and agonist-contacting EL2. These results indicate that A3AR allostery is species-dependent and provide mechanistic insights into this therapeutically promising class of agents. 相似文献
106.
Context
Increased Anti-Mullerian Hormone in polycystic ovary syndrome, may be due to overactive follicles rather than reflect antral follicle count.Objective
Does Anti-Mullerian Hormone reflect antral follicle count similarly in women with or without polycystic ovary syndrome or polycystic ovarian morphology?Design
Cross-sectional, case-control.Setting
Women who delivered preterm in 1999–2006. For each index woman, a woman with a term delivery was identified.Patients
Participation rate was 69%. Between 2006–2008, 262 women were included, and diagnosed to have polycystic ovary syndrome, polycystic ovarian morphology or to be normal controls.Intervention(s)
Blood tests, a clinical examination and vaginal ultrasound.Main Outcome Measure(s)
Anti-Mullerian Hormone / antral follicle count -ratio, SHBG, androstenedione and insulin, to test potential influence on the Anti-Mullerian Hormone / antral follicle count -ratio.Results
Mean Anti-Mullerian Hormone / antral follicle count ratio in women with polycystic ovary syndrome or polycystic ovarian morphology was similar to that of the controls (polycystic ovary syndrome: 1,2 p = 0,10 polycystic ovarian morphology: 1,2, p = 0,27 Controls 1,3). Anti-Mullerian Hormone showed a positive linear correlation to antral follicle count in all groups. Multivariate analysis did not change the results.Conclusions
We confirmed the positive correlation between AMH and follicle count. Anti-Mullerian Hormone seems to be a reliable predictor of antral follicle count, independent of polycystic ovary syndrome diagnosis or ovarian morphology. 相似文献107.
Susanne Matschi Katharina Hake Marco Herde Bettina Hause Tina Romeis 《The Plant cell》2015,27(3):591-606
Phytohormones play an important role in development and stress adaptations in plants, and several interacting hormonal pathways have been suggested to accomplish fine-tuning of stress responses at the expense of growth. This work describes the role played by the CALCIUM-DEPENDENT PROTEIN KINASE CPK28 in balancing phytohormone-mediated development in Arabidopsis thaliana, specifically during generative growth. cpk28 mutants exhibit growth reduction solely as adult plants, coinciding with altered balance of the phytohormones jasmonic acid (JA) and gibberellic acid (GA). JA-dependent gene expression and the levels of several JA metabolites were elevated in a growth phase-dependent manner in cpk28, and accumulation of JA metabolites was confined locally to the central rosette tissue. No elevated resistance toward herbivores or necrotrophic pathogens was detected for cpk28 plants, either on the whole-plant level or specifically within the tissue displaying elevated JA levels. Abolishment of JA biosynthesis or JA signaling led to a full reversion of the cpk28 growth phenotype, while modification of GA signaling did not. Our data identify CPK28 as a growth phase-dependent key negative regulator of distinct processes: While in seedlings, CPK28 regulates reactive oxygen species-mediated defense signaling; in adult plants, CPK28 confers developmental processes by the tissue-specific balance of JA and GA without affecting JA-mediated defense responses. 相似文献
108.
The sll1418 gene encodes a PsbP-like protein in Synechocystis sp. PCC 6803. Expression of sll1418 was similar in BG-11 and in Cl−- or Ca2+-limiting media, and inactivation of sll1418 did not prevent photoautotrophic growth in normal or nutrient-limiting conditions. Also the wild-type and ΔPsbP strains exhibited similar oxygen evolution and assembly of Photosystem II (PS II) centers. Inactivation of sll1418 in the ΔPsbO: ΔPsbP, ΔPsbQ:ΔPsbP, ΔPsbU:ΔPsbP and ΔPsbV:ΔPsbP mutants did not prevent photoautotrophy or alter PS II assembly and oxygen evolution in these strains. Moreover, the absence of PsbP did not affect the ability of alkaline pH to restore photoautotrophic growth in the ΔPsbO:ΔPsbU strain. The PsbO, PsbU and PsbV proteins are required for thermostability of PS II and thermal acclimation in Synechocystis sp. PCC 6803 [Kimura et al. (2002) Plant Cell Physiol 43: 932–938]. However, thermostability and thermal acclimation in ΔPsbP cells were similar to wild type. These results are consistent with the conclusion that PsbP is associated with ∼3 of PS II centers, and may play a regulatory role in PS II [Thornton et al. (2004) Plant Cell 16: 2164–2175]. 相似文献
109.
110.