全文获取类型
收费全文 | 2522篇 |
免费 | 273篇 |
专业分类
2795篇 |
出版年
2024年 | 4篇 |
2023年 | 15篇 |
2022年 | 29篇 |
2021年 | 67篇 |
2020年 | 44篇 |
2019年 | 41篇 |
2018年 | 46篇 |
2017年 | 38篇 |
2016年 | 89篇 |
2015年 | 119篇 |
2014年 | 128篇 |
2013年 | 178篇 |
2012年 | 226篇 |
2011年 | 201篇 |
2010年 | 134篇 |
2009年 | 112篇 |
2008年 | 159篇 |
2007年 | 161篇 |
2006年 | 157篇 |
2005年 | 152篇 |
2004年 | 127篇 |
2003年 | 120篇 |
2002年 | 93篇 |
2001年 | 26篇 |
2000年 | 32篇 |
1999年 | 30篇 |
1998年 | 29篇 |
1997年 | 15篇 |
1996年 | 18篇 |
1995年 | 16篇 |
1994年 | 19篇 |
1993年 | 16篇 |
1992年 | 15篇 |
1991年 | 10篇 |
1990年 | 10篇 |
1989年 | 5篇 |
1988年 | 9篇 |
1987年 | 11篇 |
1986年 | 5篇 |
1985年 | 6篇 |
1984年 | 11篇 |
1983年 | 5篇 |
1982年 | 7篇 |
1981年 | 8篇 |
1980年 | 3篇 |
1979年 | 13篇 |
1978年 | 3篇 |
1975年 | 3篇 |
1939年 | 3篇 |
1932年 | 2篇 |
排序方式: 共有2795条查询结果,搜索用时 15 毫秒
11.
Coagulase-negative staphylococci (CoNS) form a thick, multilayered biofilm on foreign bodies and are a major cause of nosocomial implant-associated infections. Although foreign body infection models are well-established, limited in vivo data are available for CoNS with small-colony-variant (SCV) phenotype described as causative agents in implant-associated infections. Therefore, we investigated the impact of the Staphylococcus epidermidis phenotype on colonization of implanted PVC catheters and abscess formation in three different mouse strains. Following introduction of a catheter subcutaneously in each flank of 8- to 12-week-old inbred C57BL/6JCrl (B6J), outbred Crl:CD1(ICR) (CD-1), and inbred BALB/cAnNCrl (BALB/c) male mice, doses of S. epidermidis O-47 wild type, its hemB mutant with stable SCV phenotype, or its complemented mutant at concentrations of 10(6) to 10(9) colony forming units (CFUs) were gently spread onto each catheter. On day 7, mice were sacrificed and the size of the abscesses as well as bacterial colonization was determined. A total of 11,500 CFUs of the complemented mutant adhered to the catheter in BALB/c followed by 9,960 CFUs and 9,900 CFUs from S. epidermidis wild type in BALB/c and CD-1, respectively. SCV colonization was highest in CD-1 with 9,500 CFUs, whereas SCVs were not detected in B6J. The minimum dose that led to colonization or abscess formation in all mouse strains was 10(7) or 10(8) CFUs of the normal phenotype, respectively. A minimum dose of 10(8) or 10(9) CFU of the hemB mutant with stable SCV phenotype led to colonization only or abscess formation, respectively. The largest abscesses were detected in BALB/c inoculated with wild type bacteria or SCV (64 mm(2) vs. 28 mm(2)). Our results indicate that colonization and abscess formation by different phenotypes of S. epidermidis in a foreign body infection model is most effective in inbred BALB/c followed by outbred CD-1 and inbred B6J mice. 相似文献
12.
Lucia Cenacchi Manuela Busch Philipp G. Schleidt Florian G. Müller Tina V.M. Stumpp Werner Mäntele Paolo Trost C. Roy D. Lancaster 《生物化学与生物物理学报:生物膜》2012,1818(3):679-688
Cytochrome (cyt) b561 proteins are dihaem-containing membrane proteins, belonging to the CYBASC (cytochrome-b561-ascorbate-reducible) family, and are proposed to be involved in ascorbate recycling and/or the facilitation of iron absorption. Here, we present the heterologous production of two cyt b561 paralogs from Arabidopsis thaliana (Acytb561-A, Acytb561-B) in Escherichia coli and Pichia pastoris, their purification, and initial characterisation. Spectra indicated that Acytb561-A resembles the best characterised member of the CYBASC family, the cytochrome b561 from adrenomedullary chromaffin vesicles, and that Acytb561-B is atypical compared to other CYBASC proteins. Haem oxidation–reduction midpoint potential (EM) values were found to be fully consistent with ascorbate oxidation activities and Fe3 +-chelates reductase activities. The ascorbate dependent reduction and protein stability of both paralogs were found to be sensitive to alkaline pH values as reported for the cytochrome b561 from chromaffin vesicles. For both paralogs, ascorbate-dependent reduction was inhibited and the low-potential haem EM values were affected significantly by incubation with diethyl pyrocarbonate (DEPC) in the absence of ascorbate. Modification with DEPC in the presence of ascorbate left the haem EM values unaltered compared to the unmodified proteins. However, ascorbate reduction was inhibited. We concluded that the ascorbate-binding site is located near the low-potential haem with the Fe3 +-chelates reduction-site close to the high-potential haem. Furthermore, inhibition of ascorbate oxidation by DEPC treatment occurs not only by lowering the haem EM values but also by an additional modification affecting ascorbate binding and/or electron transfer. Analytical gel filtration experiments suggest that both cyt b561 paralogs exist as homodimers. 相似文献
13.
Nadja Schultz-Jensen Berith E. Knudsen Zuzana Frkova Jens Aamand Tina Johansen Jette Thykaer Sebastian R. Sørensen 《Applied microbiology and biotechnology》2014,98(5):2335-2344
The Aminobacter sp. strain MSH1 has potential for pesticide bioremediation because it degrades the herbicide metabolite 2,6-dichlorobenzamide (BAM). Production of the BAM-degrading bacterium using aerobic bioreactor fermentation was investigated. A mineral salt medium limited for carbon and with an element composition similar to the strain was generated. The optimal pH and temperature for strain growth were determined using shaker flasks and verified in bioreactors. Glucose, fructose, and glycerol were suitable carbon sources for MSH1 (μ?=?0.1 h?1); slower growth was observed on succinate and acetic acid (μ?=?0.01 h?1). Standard conditions for growth of the MSH1 strain were defined at pH 7 and 25 °C, with glucose as the carbon source. In bioreactors (1 and 5 L), the specific growth rate of MSH1 increased from μ?=?0.1 h?1 on traditional mineral salt medium to μ?=?0.18 h?1 on the optimized mineral salt medium. The biomass yield under standard conditions was 0.47 g dry weight biomass/g glucose consumed. An investigation of the catabolic capacity of MSH1 cells harvested in exponential and stationary growth phases showed a degradation activity per cell of about 3?×?10?9 μg BAM h?1. Thus, fast, efficient, large-scale production of herbicide-degrading Aminobacter was possible, bringing the use of this bacterium in bioaugmentation field remediation closer to reality. 相似文献
14.
Iverson TM Luna-Chavez C Croal LR Cecchini G Rees DC 《The Journal of biological chemistry》2002,277(18):16124-16130
The quinol-fumarate reductase (QFR) respiratory complex of Escherichia coli is a four-subunit integral-membrane complex that catalyzes the final step of anaerobic respiration when fumarate is the terminal electron acceptor. The membrane-soluble redox-active molecule menaquinol (MQH(2)) transfers electrons to QFR by binding directly to the membrane-spanning region. The crystal structure of QFR contains two quinone species, presumably MQH(2), bound to the transmembrane-spanning region. The binding sites for the two quinone molecules are termed Q(P) and Q(D), indicating their positions proximal (Q(P)) or distal (Q(D)) to the site of fumarate reduction in the hydrophilic flavoprotein and iron-sulfur protein subunits. It has not been established whether both of these sites are mechanistically significant. Co-crystallization studies of the E. coli QFR with the known quinol-binding site inhibitors 2-heptyl-4-hydroxyquinoline-N-oxide and 2-[1-(p-chlorophenyl)ethyl] 4,6-dinitrophenol establish that both inhibitors block the binding of MQH(2) at the Q(P) site. In the structures with the inhibitor bound at Q(P), no density is observed at Q(D), which suggests that the occupancy of this site can vary and argues against a structurally obligatory role for quinol binding to Q(D). A comparison of the Q(P) site of the E. coli enzyme with quinone-binding sites in other respiratory enzymes shows that an acidic residue is structurally conserved. This acidic residue, Glu-C29, in the E. coli enzyme may act as a proton shuttle from the quinol during enzyme turnover. 相似文献
15.
16.
Tesch LD Raghavendra MP Bedsted-Faarvang T Gettins PG Olson ST 《Protein science : a publication of the Protein Society》2005,14(2):533-542
The viral serpin, crmA, is distinguished by its small size and ability to inhibit both serine and cysteine proteases utilizing a reactive loop shorter than most other serpins. Here, we characterize the mechanism of crmA inhibition of serine proteases and probe the reactive loop length requirements for inhibition with two crmA reactive loop variants. P1 Arg crmA inhibited the trypsin-like proteases, thrombin, and factor Xa, with moderate efficiencies (approximately 10(2)-10(4) M(-1)sec(-1)), near equimolar inhibition stoichiometries, and formation of SDS-stable complexes which were resistant to dissociation (k(diss) approximately 10(-7) sec(-1)), consistent with a serpin-type inhibition mechanism. Trypsin was not inhibited, but efficiently cleaved the variant crmA as a substrate (k(cat)/K(M) of approximately 10(6) M(-1) sec(-1)). N-terminal sequencing confirmed that the P1 Arg-P1'Cys bond was the site of cleavage. Altering the placement of the Arg in a double mutant P1 Gly-P1'Arg crmA resulted in minimal ability to inhibit any of the trypsin family proteases. This variant was cleaved by the proteases approximately 10-fold less efficiently than P1 Arg crmA. Surprisingly, pancreatic elastase was rapidly inhibited by wild-type and P1 Arg crmAs (10(5)-10(6) M(-1)sec(-1)), although with elevated inhibition stoichiometries and higher rates of complex dissociation. N-terminal sequencing showed that elastase attacked the P1'Cys-P2'Ala bond, indicating that crmA can inhibit proteases using a reactive loop length similar to that used by other serpins, but with variations in this inhibition arising from different effective P2 residues. These results indicate that crmA inhibits serine proteases by the established serpin conformational trapping mechanism, but is unusual in inhibiting through either of two adjacent reactive sites. 相似文献
17.
Michael E. Hall Tina E. Brinkley Haroon Chughtai Timothy M. Morgan Craig A. Hamilton Jennifer H. Jordan R. Brandon Stacey Sandra Soots W. Gregory Hundley 《PloS one》2016,11(1)
Background
Obesity and visceral adiposity are increasingly recognized risk factors for cardiovascular disease. Visceral fat may reduce myocardial perfusion by impairing vascular endothelial function. Women experience more anginal symptoms compared to men despite less severe coronary artery stenosis, as assessed by angiography. Women and men have different fat storage patterns which may account for the observed differences in cardiovascular disease. Therefore, our objective was to evaluate the relationship between visceral adipose tissue distributions and myocardial perfusion in men and women.Methods
Visceral and subcutaneous fat distributions and myocardial perfusion were measured in 69 men and women without coronary artery disease using magnetic resonance imaging techniques. Myocardial perfusion index was quantified after first-pass perfusion with gadolinium contrast at peak dose dobutamine stress.Results
We observed inverse relationships between female gender (r = -0.35, p = 0.003), pericardial fat (r = -0.36, p = 0.03), intraperitoneal fat (r = -0.37, p = 0.001), and retroperitoneal fat (r = -0.36, p = 0.002) and myocardial perfusion index. Visceral fat depots were not associated with reduced myocardial perfusion at peak dose dobutamine in men. However, in women, BMI (r = -0.33, p = 0.04), pericardial fat (r = -0.53, p = 0.02), subcutaneous fat (r = -0.39, p = 0.01) and intraperitoneal fat (r = -0.30, p = 0.05) were associated with reduced myocardial perfusion during dobutamine stress.Conclusions
Higher visceral fat volumes are associated with reduced left ventricular myocardial perfusion at peak dose dobutamine stress in women but not in men. These findings suggest that visceral fat may contribute to abnormal microcirculatory coronary artery perfusion syndromes, explaining why some women exhibit more anginal symptoms despite typically lower grade epicardial coronary artery stenoses than men. 相似文献18.
Emmanuel M Mbaku Lubo Zhang William J Pearce Sue P Duckles John Buchholz 《Journal of applied physiology》2003,94(2):724-732
In addition to adrenergic innervation, cerebral arteries also contain neuronal nitric oxide synthase (nNOS)-expressing nerves that augment adrenergic nerve function. We examined the impact of development and chronic high-altitude hypoxia (3,820 m) on nNOS nerve function in near-term fetal and adult sheep middle cerebral arteries (MCA). Electrical stimulation-evoked release of norepinephrine (NE) was measured with HPLC and electrochemical detection, whereas nitric oxide (NO) release was measured by chemiluminescence. An inhibitor of NO synthase, N(omega)-nitro-l-arginine methyl ester (l-NAME), significantly inhibited stimulation-evoked NE release in MCA from normoxic fetal and adult sheep with no effect in MCA from hypoxic animals. Addition of the NO donor S-nitroso-N-acetyl-dl-penicillamine fully reversed the effect of l-NAME in MCA from normoxic animals with no effect in MCA from hypoxic animals. Electrical stimulation caused a significant increase in NO release in MCA from normoxic animals, an effect that was blocked by the neurotoxin tetrodotoxin, whereas there was no increase in NO release in MCA from hypoxic animals. Relative abundance of nNOS as measured by Western blot analysis was similar in normoxic fetal and adult MCA. However, after hypoxic acclimitization, nNOS levels dramatically declined in both fetal and adult MCA. These data suggest that the function of nNOS nerves declines during chronic high-altitude hypoxia, a functional change that may be related to a decline in nNOS protein levels. 相似文献
19.
Tang Z Mandel LL Yean SL Lin CX Chen T Yanagida M Lin RJ 《Experimental cell research》2003,283(1):101-115
The CLK/STY kinases are a family of dual-specificity protein kinases implicated in the regulation of cellular growth and differentiation. Some of the kinases in the family are shown to phosphorylate serine-arginine-rich splicing factors and to regulate pre-mRNA splicing. However, the actual cellular mechanism that regulates cell growth, differentiation, and development by CLK/STY remains unclear. Here we show that a functionally conserved CLK/STY kinase exists in Schizosaccharomyces pombe, and this orthologue, called Kic1, regulates the cell surface and septum formation as well as a late step in cytokinesis. The Kic1 protein is modified in vivo, likely by phosphorylation, suggesting that it can be involved in a control cascade. In addition, kic1(+) together with dsk1(+), which encodes a related SR-specific protein kinase, constitutes a critical in vivo function for cell growth. The results provide the first in vivo evidence for the functional conservation of the CLK/STY family through evolution from fission yeast to mammals. Furthermore, since cell division and cell-cell interaction are fundamental for the differentiation and development of an organism, the novel cellular role of kic1(+) revealed from this study offers a clue to the understanding of its counterparts in higher eukaryotes. 相似文献
20.
Jens Buchholz Andreas Schwentner Britta Brunnenkan Christina Gabris Simon Grimm Robert Gerstmeir Ralf Takors Bernhard J. Eikmanns Bastian Blombach 《Applied and environmental microbiology》2013,79(18):5566-5575
Exchange of the native Corynebacterium glutamicum promoter of the aceE gene, encoding the E1p subunit of the pyruvate dehydrogenase complex (PDHC), with mutated dapA promoter variants led to a series of C. glutamicum strains with gradually reduced growth rates and PDHC activities. Upon overexpression of the l-valine biosynthetic genes ilvBNCE, all strains produced l-valine. Among these strains, C. glutamicum aceE A16 (pJC4 ilvBNCE) showed the highest biomass and product yields, and thus it was further improved by additional deletion of the pqo and ppc genes, encoding pyruvate:quinone oxidoreductase and phosphoenolpyruvate carboxylase, respectively. In fed-batch fermentations at high cell densities, C. glutamicum aceE A16 Δpqo Δppc (pJC4 ilvBNCE) produced up to 738 mM (i.e., 86.5 g/liter) l-valine with an overall yield (YP/S) of 0.36 mol per mol of glucose and a volumetric productivity (QP) of 13.6 mM per h [1.6 g/(liter × h)]. Additional inactivation of the transaminase B gene (ilvE) and overexpression of ilvBNCD instead of ilvBNCE transformed the l-valine-producing strain into a 2-ketoisovalerate producer, excreting up to 303 mM (35 g/liter) 2-ketoisovalerate with a YP/S of 0.24 mol per mol of glucose and a QP of 6.9 mM per h [0.8 g/(liter × h)]. The replacement of the aceE promoter by the dapA-A16 promoter in the two C. glutamicum
l-lysine producers DM1800 and DM1933 improved the production by 100% and 44%, respectively. These results demonstrate that C. glutamicum strains with reduced PDHC activity are an excellent platform for the production of pyruvate-derived products. 相似文献