首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3186篇
  免费   399篇
  3585篇
  2023年   18篇
  2022年   28篇
  2021年   77篇
  2020年   46篇
  2019年   37篇
  2018年   48篇
  2017年   38篇
  2016年   85篇
  2015年   141篇
  2014年   132篇
  2013年   182篇
  2012年   225篇
  2011年   210篇
  2010年   127篇
  2009年   112篇
  2008年   170篇
  2007年   169篇
  2006年   167篇
  2005年   153篇
  2004年   143篇
  2003年   130篇
  2002年   99篇
  2001年   46篇
  2000年   37篇
  1999年   44篇
  1998年   33篇
  1997年   19篇
  1996年   20篇
  1994年   28篇
  1993年   22篇
  1992年   29篇
  1991年   26篇
  1990年   42篇
  1989年   47篇
  1988年   42篇
  1987年   33篇
  1986年   32篇
  1985年   51篇
  1984年   66篇
  1983年   54篇
  1982年   40篇
  1981年   31篇
  1980年   21篇
  1979年   41篇
  1977年   20篇
  1976年   18篇
  1975年   21篇
  1974年   18篇
  1973年   20篇
  1972年   24篇
排序方式: 共有3585条查询结果,搜索用时 62 毫秒
51.
The risk of developing pancreatitis is elevated in type 2 diabetes and obesity. Cases of pancreatitis have been reported in type 2 diabetes patients treated with GLP-1 (GLP-1R) receptor agonists. To examine whether the GLP-1R agonist exenatide potentially induces or modulates pancreatitis, the effect of exenatide was evaluated in normal or diabetic rodents. Normal and diabetic rats received a single exenatide dose (0.072, 0.24, and 0.72 nmol/kg) or vehicle. Diabetic ob/ob or HF-STZ mice were infused with exenatide (1.2 and 7.2 nmol·kg(-1)·day(-1)) or vehicle for 4 wk. Post-exenatide treatment, pancreatitis was induced with caerulein (CRN) or sodium taurocholate (ST), and changes in plasma amylase and lipase were measured. In ob/ob mice, plasma cytokines (IL-1β, IL-2, IL-6, MCP-1, IFNγ, and TNFα) and pancreatitis-associated genes were assessed. Pancreata were weighed and examined histologically. Exenatide treatment alone did not modify plasma amylase or lipase in any models tested. Exenatide attenuated CRN-induced release of amylase and lipase in normal rats and ob/ob mice but did not modify the response to ST infusion. Plasma cytokines and pancreatic weight were unaffected by exenatide. Exenatide upregulated Reg3b but not Il6, Ccl2, Nfkb1, or Vamp8 expression. Histological analysis revealed that the highest doses of exenatide decreased CRN- or ST-induced acute inflammation, vacuolation, and acinar single cell necrosis in mice and rats, respectively. Ductal cell proliferation rates were low and similar across all groups of ob/ob mice. In conclusion, exenatide did not modify plasma amylase and lipase concentrations in rodents without pancreatitis and improved chemically induced pancreatitis in normal and diabetic rodents.  相似文献   
52.

Background

Studies of the genetic basis of drug response could help clarify mechanisms of drug action/metabolism, and facilitate development of genotype-based predictive tests of efficacy or toxicity (pharmacogenetics).

Objectives

We conducted a systematic review and field synopsis of pharmacogenetic studies to quantify the scope and quality of available evidence in this field in order to inform future research.

Data Sources

Original research articles were identified in Medline, reference lists from 24 meta-analyses/systematic reviews/review articles and U.S. Food and Drug Administration website of approved pharmacogenetic tests.

Study Eligibility Criteria, Participants, and Intervention Criteria

We included any study in which either intended or adverse response to drug therapy was examined in relation to genetic variation in the germline or cancer cells in humans.

Study Appraisal and Synthesis Methods

Study characteristics and data reported in abstracts were recorded. We further analysed full text from a random 10% subset of articles spanning the different subclasses of study.

Results

From 102,264 Medline hits and 1,641 articles from other sources, we identified 1,668 primary research articles (1987 to 2007, inclusive). A high proportion of remaining articles were reviews/commentaries (ratio of reviews to primary research approximately 25∶1). The majority of studies (81.8%) were set in Europe and North America focussing on cancer, cardiovascular disease and neurology/psychiatry. There was predominantly a candidate gene approach using common alleles, which despite small sample sizes (median 93 [IQR 40–222]) with no trend to an increase over time, generated a high proportion (74.5%) of nominally significant (p<0.05) reported associations suggesting the possibility of significance-chasing bias. Despite 136 examples of gene/drug interventions being the subject of ≥4 studies, only 31 meta-analyses were identified. The majority (69.4%) of end-points were continuous and likely surrogate rather than hard (binary) clinical end-points.

Conclusions and Implications of Key Findings

The high expectation but limited translation of pharmacogenetic research thus far may be explained by the preponderance of reviews over primary research, small sample sizes, a mainly candidate gene approach, surrogate markers, an excess of nominally positive to truly positive associations and paucity of meta-analyses. Recommendations based on these findings should inform future study design to help realise the goal of personalised medicines.

Systematic Review Registration Number

Not Registered  相似文献   
53.
Individuals frequently leave home before reaching reproductive age, but the proximate causes of natal dispersal remain relatively unknown. The social cohesion hypothesis predicts that individuals who engage in more (affiliative) interactions are less likely to disperse. Despite the intuitive nature of this hypothesis, support is both limited and equivocal. We used formal social network analyses to quantify precisely both direct and indirect measures of social cohesion in yellow-bellied marmots. Because approximately 50 per cent of female yearlings disperse, we expected that social relationships and network measures of cohesion would predict dispersal. By contrast, because most male yearlings disperse, we expected that social relationships and cohesion would play a less important role. We found that female yearlings that interacted with more individuals, and those that were more socially embedded in their groups, were less likely to disperse. For males, social interactions were relatively unimportant determinants of dispersal. This is the first strong support for the social cohesion hypothesis and suggests that the specific nature of social relationships, not simply the number of affiliative relationships, may influence the propensity to disperse.  相似文献   
54.
Immune system impairment and increased susceptibility to infection among alcohol abusers is a significant but not well-understood problem. We hypothesized that acute ethanol administration would inhibit leukocyte recruitment and endothelial cell activation during inflammation and infection. Using LPS and carrageenan air pouch models in mice, we found that physiological concentrations of ethanol (1-5 g/kg) significantly blocked leukocyte recruitment (50-90%). Because endothelial cell activation and immune cell-endothelial cell interactions are critical regulators of leukocyte recruitment, we analyzed the effect of acute ethanol exposure on endothelial cell activation in vivo using the localized Shwartzman reaction model. In this model, ethanol markedly suppressed leukocyte accumulation and endothelial cell adhesion molecule expression in a dose-dependent manner. Finally, we examined the direct effects of ethanol on endothelial cell activation and leukocyte-endothelial cell interactions in vitro. Ethanol, at concentrations within the range found in human blood after acute exposure and below the levels that induce cytotoxicity (0.1-0.5%), did not induce endothelial cell activation, but significantly inhibited TNF-mediated endothelial cell activation, as measured by adhesion molecule (E-selectin, ICAM-1, VCAM-1) expression and chemokine (IL-8, MCP-1, RANTES) production and leukocyte adhesion in vitro. Studies exploring the potential mechanism by which ethanol suppresses endothelial cell activation revealed that ethanol blocked NF-kappaB nuclear entry in an IkappaBalpha-dependent manner. These findings support the hypothesis that acute ethanol overexposure may increase the risk of infection and inhibit the host inflammatory response, in part, by blocking endothelial cell activation and subsequent immune cell-endothelial cell interactions required for efficient immune cell recruitment.  相似文献   
55.
Contamination of food and water supplies by microorganisms such as Escherichia coli, the need for point-of-care bedside analysis of biological samples, and concerns about terrorist attacks using biological organisms, have made the development of fast, reliable, and sensitive analytical methodologies for use in monitoring of pathogens very important. With a variety of biosensors being developed for extremely sensitive and rapid nucleic acid diagnostics, it has become even more important to shift focus towards creation of methods to decrease the amount of time and effort necessary for sample preparation. The application of ultrasound has the potential to create DNA fragments from genomic material with lengths that are suitable for determination using biosensors and microarrays. For example, application of 85 W power at a frequency of 20 kHz can produce a preponderance of fragments of 100-400 base pairs (bp) within several seconds, and sample processing can lead to over 75% conversion from genomic material to fragments in times of 20-30 s. A proportion of these fragments are in a single-stranded state and are suitable for hydridization with immobilized single-stranded DNA probe oligonucleotides using a fiber optic biosensor. Control of factors such as salt concentration, exposure time, ultrasound power, and the initial temperature of the solution, can affect the length and form (single- or double-stranded) of DNA fragments that are generated by ultrasound, and average fragment length can be adjusted by selection of these operating parameters.  相似文献   
56.
Pseudomonas aeruginosa is a Gram-negative opportunistic human pathogen and a threat for immunocompromised and cystic fibrosis patients. It is responsible for acute and chronic infections and can switch between these lifestyles upon taking an informed decision involving complex regulatory networks. The RetS/LadS/Gac/Rsm network and the cyclic-di-GMP (c-di-GMP) signaling pathways are both central to this phenomenon redirecting the P. aeruginosa population toward a biofilm mode of growth, which is associated with chronic infections. While these two pathways were traditionally studied independently from each other, we recently showed that cellular levels of c-di-GMP are increased in the hyperbiofilm retS mutant. Here, we have formally established the link between the two networks by showing that the SadC diguanylate cyclase is central to the Gac/Rsm-associated phenotypes, notably, biofilm formation. Importantly, SadC is involved in the signaling that converges onto the RsmA translational repressor either via RetS/LadS or via HptB/HsbR. Although the level of expression of the sadC gene does not seem to be impacted by the regulatory cascade, the production of the SadC protein is tightly repressed by RsmA. This adds to the growing complexity of the signaling network associated with c-di-GMP in P. aeruginosa. While this organism possesses more than 40 c-di-GMP-related enzymes, it remains unclear how signaling specificity is maintained within the c-di-GMP network. The finding that SadC but no other diguanylate cyclase is related to the formation of biofilm governed by the Gac/Rsm pathway further contributes to understanding of this insulation mechanism.  相似文献   
57.
Despite cultivation and seed import bans of genetically modified (GM) oilseed rape (Brassica napus L.), feral GM plants were found growing along railway lines and in port areas at four sites in Switzerland in 2011 and 2012. All GM plants were identified as glyphosate-resistant GM event GT73 (Roundup Ready, Monsanto). The most affected sites were the Rhine port of Basel and the St. Johann freight railway station in Basel. To assess the distribution and intra- and interspecific outcrossing of GM oilseed rape in more detail, we monitored these two sites in 2013. Leaves and seed pods of feral oilseed rape plants, their possible hybridization partners and putative hybrid plants were sampled in monthly intervals and analysed for the presence of transgenes by real-time PCR. Using flow cytometry, we measured DNA contents of cell nuclei to confirm putative hybrids. In total, 2787 plants were sampled. The presence of GT73 oilseed rape could be confirmed at all previously documented sampling locations and was additionally detected at one new sampling location within the Rhine port. Furthermore, we found the glufosinate-resistant GM events MS8xRF3, MS8 and RF3 (all traded as InVigor, Bayer) at five sampling locations in the Rhine port. To our knowledge, this is the first time that feral MS8xRF3, MS8 or RF3 plants were detected in Europe. Real-time PCR analyses of seeds showed outcrossing of GT73 into two non-GM oilseed rape plants, but no outcrossing of transgenes into related wild species was observed. We found no hybrids between oilseed rape and related species. GM plants most frequently occurred at unloading sites for ships, indicating that ship cargo traffic is the main entry pathway for GM oilseed rape. In the future, it will be of major interest to determine the source of GM oilseed rape seeds.  相似文献   
58.
In mitosis, the pericentromere is organized into a spring composed of cohesin, condensin, and a rosette of intramolecular chromatin loops. Cohesin and condensin are enriched in the pericentromere, with spatially distinct patterns of localization. Using model convolution of computer simulations, we deduce the mechanistic consequences of their spatial segregation. Condensin lies proximal to the spindle axis, whereas cohesin is radially displaced from condensin and the interpolar microtubules. The histone deacetylase Sir2 is responsible for the axial position of condensin, while the radial displacement of chromatin loops dictates the position of cohesin. The heterogeneity in distribution of condensin is most accurately modeled by clusters along the spindle axis. In contrast, cohesin is evenly distributed (barrel of 500-nm width × 550-nm length). Models of cohesin gradients that decay from the centromere or sister cohesin axis, as previously suggested, do not match experimental images. The fine structures of cohesin and condensin deduced with subpixel localization accuracy reveal critical features of how these complexes mold pericentric chromatin into a functional spring.  相似文献   
59.
The following hypothesis is put forward: X chromatin in man condenses around a center which is situated on Xq at a short distance from the centromere. The hypothesis is based on, and explains, two classes of observations. (1) Abnormal X chromosomes that have the assumed center in duplicate form bipartite Barr bodies in part of the cells. The frequency of bipartite bodies and the distance between the two parts seem to be determined by the distance between the postulated centers. (2) A large number of variously abnormal X chromosomes have been described. Almost all of them possess the postulated center and it seems possible that the very few apparent exceptions represent misidentifications of chromosome Xq — as isochromosome i(Xp). According to the hypothesis, chromosomes lacking the center would form no Barr body and therefore presumably would not be inactivated, thus leaving the cell severely unbalanced. Furthermore, absence of the center might interfere with the viability of the chromosome itself.  相似文献   
60.
In the budding yeast Saccharomyces cerevisiae, the mitotic spindle must align along the mother-bud axis to accurately partition the sister chromatids into daughter cells. Previous studies showed that spindle orientation required both astral microtubules and the actin cytoskeleton. We now report that maintenance of correct spindle orientation does not depend on F-actin during G2/M phase of the cell cycle. Depolymerization of F-actin using Latrunculin-A did not perturb spindle orientation after this stage. Even an early step in spindle orientation, the migration of the spindle pole body (SPB), became actin-independent if it was delayed until late in the cell cycle. Early in the cell cycle, both SPB migration and spindle orientation were very sensitive to perturbation of F-actin. Selective disruption of actin cables using a conditional tropomyosin double-mutant also led to defects in spindle orientation, even though cortical actin patches were still polarized. This suggests that actin cables are important for either guiding astral microtubules into the bud or anchoring them in the bud. In addition, F-actin was required early in the cell cycle for the development of the actin-independent spindle orientation capability later in the cell cycle. Finally, neither SPB migration nor the switch from actin-dependent to actin-independent spindle behavior required B-type cyclins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号