首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   288篇
  免费   26篇
  国内免费   4篇
  2024年   1篇
  2022年   5篇
  2021年   10篇
  2020年   5篇
  2019年   9篇
  2018年   4篇
  2017年   6篇
  2016年   14篇
  2015年   23篇
  2014年   19篇
  2013年   23篇
  2012年   23篇
  2011年   26篇
  2010年   20篇
  2009年   12篇
  2008年   12篇
  2007年   17篇
  2006年   13篇
  2005年   13篇
  2004年   17篇
  2003年   13篇
  2002年   10篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1998年   2篇
  1997年   4篇
  1995年   1篇
  1991年   1篇
  1987年   1篇
  1985年   1篇
  1981年   1篇
  1974年   1篇
  1973年   1篇
  1971年   2篇
  1968年   1篇
  1966年   1篇
排序方式: 共有318条查询结果,搜索用时 234 毫秒
51.
Microalgal neutral lipids [mainly in the form of triacylglycerols (TAGs)], feasible substrates for biofuel, are typically accumulated during the stationary growth phase. To make microalgal biofuels economically competitive with fossil fuels, generating strains that trigger TAG accumulation from the exponential growth phase is a promising biological approach. The regulatory mechanisms to trigger TAG accumulation from the exponential growth phase (TAEP) are important to be uncovered for advancing economic feasibility. Through the inhibition of pyruvate dehydrogenase kinase by sodium dichloroacetate, acetyl‐CoA level increased, resulting in TAEP in microalga Dunaliella tertiolecta. We further reported refilling of acetyl‐CoA pool through branched‐chain amino acid catabolism contributed to an overall sixfold TAEP with marginal compromise (4%) on growth in a TAG‐rich D. tertiolecta mutant from targeted screening. Herein, a three‐step α loop‐integrated metabolic model is introduced to shed lights on the neutral lipid regulatory mechanism. This article provides novel approaches to compress lipid production phase and heightens lipid productivity and photosynthetic carbon capture via enhancing acetyl‐CoA level, which would optimize renewable microalgal biofuel to fulfil the demanding fuel market.  相似文献   
52.
Primary cell walls from plants are composites of cellulose tethered by cross-linking glycans and embedded in a matrix of pectins. Cell wall composition varies between plant species, reflecting in some instances the evolutionary distance between them. In this work the monosaccharide compositions of isolated primary cell walls of nine fern species and one lycophyte were characterized and compared with those from Equisetum and an angiosperm dicot. The relatively high abundance of mannose in these plants suggests that mannans may constitute the major cross-linking glycan in the primary walls of pteridophytes and lycophytes. Pectin-related polysaccharides contained mostly rhamnose and uronic acids, indicating the presence of rhamnogalacturonan I highly substituted with galactose and arabinose. Structural and fine-structural analyses of the hemicellulose fraction of leaves of Adiantum raddianum confirmed this hypothesis. Linkage analysis showed that the mannan contains mostly 4-Man with very little 4,6-Man, indicating a low percentage of branching with galactose. Treatment of the mannan-rich fractions with endo-β-mannanase produced characteristic mannan oligosaccharides. Minor amounts of xyloglucan and xylans were also detected. These data and those of others suggest that all vascular plants contain xyloglucans, arabinoxylans, and (gluco)mannans, but in different proportions that define cell wall types. Whereas xyloglucan and pectin-rich walls define Type I walls of dicots and many monocots, arabinoxylans and lower proportion of pectin define the Type II walls of commelinoid monocots. The mannan-rich primary walls with low pectins of many ferns and a lycopod indicate a fundamentally different wall type among land plants, the Type III wall.  相似文献   
53.
The minichromosome maintenance (MCM) complex, which plays multiple important roles in DNA replication, is loaded onto chromatin following mitosis, remains on chromatin until the completion of DNA synthesis, and then is unloaded by a poorly defined mechanism that involves the MCM binding protein (MCM-BP). Here we show that MCM-BP directly interacts with the ubiquitin-specific protease USP7, that this interaction occurs predominantly on chromatin, and that MCM-BP can tether USP7 to MCM proteins. Detailed biochemical and structure analyses of the USP7–MCM-BP interaction showed that the 155PSTS158 MCM-BP sequence mediates critical interactions with the TRAF domain binding pocket of USP7. Analysis of the effects of USP7 knockout on DNA replication revealed that lack of USP7 results in slowed progression through late S phase without globally affecting the fork rate or origin usage. Lack of USP7 also resulted in increased levels of MCM proteins on chromatin, and investigation of the cause of this increase revealed a defect in the dissociation of MCM proteins from chromatin in mid- to late S phase. This role of USP7 mirrors the previously described role for MCM-BP in MCM complex unloading and suggests that USP7 works with MCM-BP to unload MCM complexes from chromatin at the end of S phase.  相似文献   
54.
This study aims to establish a human gut microbiota (HGM) transplanted gnotobiotic (Gn) pig model of human rotavirus (HRV) infection and diarrhea, and to verify the dose-effects of probiotics on HRV vaccine-induced immune responses. Our previous studies using the Gn pig model found that probiotics dose-dependently regulated both T cell and B cell immune responses induced by rotavirus vaccines. We generated the HGM transplanted neonatal Gn pigs through daily feeding of neonatal human fecal suspension to germ-free pigs for 3 days starting at 12 hours after birth. We found that attenuated HRV (AttHRV) vaccination conferred similar overall protection against rotavirus diarrhea and virus shedding in Gn pigs and HGM transplanted Gn pigs. HGM promoted the development of the neonatal immune system, as evidenced by the significantly enhanced IFN-γ producing T cell responses and reduction of regulatory T cells and their cytokine production in the AttHRV-vaccinated pigs. The higher dose Lactobacillus rhamnosus GG (LGG) feeding (14 doses, up to 109 colony-forming-unit [CFU]/dose) effectively increased the LGG counts in the HGM Gn pig intestinal contents and significantly enhanced HRV-specific IFN-γ producing T cell responses to the AttHRV vaccine. Lower dose LGG (9 doses, up to 106 CFU/dose) was ineffective. Neither doses of LGG significantly improved the protection rate, HRV-specific IgA and IgG antibody titers in serum, or IgA antibody titers in intestinal contents compared to the AttHRV vaccine alone, suggesting that an even higher dose of LGG is needed to overcome the influence of the microbiota to achieve the immunostimulatory effect in the HGM pigs. This study demonstrated that HGM Gn pig is an applicable animal model for studying immune responses to rotavirus vaccines and can be used for studying interventions (i.e., probiotics and prebiotics) that may enhance the immunogenicity and protective efficacy of vaccines through improving the gut microbiota.  相似文献   
55.

Background

From the 17th to 19th January 2012, a group of 92 college students and teachers attended a retreat in a hotel located on Pangkor Island, off the west coast of Peninsular Malaysia. Following the onset of symptoms in many participants who presented to our institute, an investigation was undertaken which ultimately identified Sarcocystis nesbitti as the cause of this outbreak.

Methodology/Principal Findings

All retreat participants were identified, and clinical and epidemiological information was obtained via clinical review and self-reported answers to a structured questionnaire. Laboratory, imaging and muscle biopsy results were evaluated and possible sources of exposure, in particular water supply, were investigated. At an average of 9–11 days upon return from the retreat, 89 (97%) of the participants became ill. A vast majority of 94% had fever with 57% of these persons experiencing relapsing fever. Myalgia was present in 91% of patients. Facial swelling from myositis of jaw muscles occurred in 9 (10%) patients. The median duration of symptoms was 17 days (IQR 7 to 30 days; range 3 to 112). Out of 4 muscle biopsies, sarcocysts were identified in 3. S. nesbitti was identified by PCR in 3 of the 4 biopsies including one biopsy without observed sarcocyst. Non-Malaysians had a median duration of symptoms longer than that of Malaysians (27.5 days vs. 14 days, p = 0.001) and were more likely to experience moderate or severe myalgia compared to mild myalgia (83.3% vs. 40.0%, p = 0.002).

Conclusions/Significance

The similarity of the symptoms and clustered time of onset suggests that all affected persons had muscular sarcocystosis. This is the largest human outbreak of sarcocystosis ever reported, with the specific Sarcocystis species identified. The largely non-specific clinical features of this illness suggest that S. nesbitti may be an under diagnosed infection in the tropics.  相似文献   
56.
57.
ObjectivesInduced pluripotent stem cells (iPSCs) generated by monolayer cultures is plagued by low efficiencies, high levels of manipulation and operator unpredictability. We have developed a platform, reprogramming, expansion, and differentiation on Microcarriers, to solve these challenges.Materials and MethodsFive sources of human somatic cells were reprogrammed, selected, expanded and differentiated in microcarriers suspension cultures.ResultsImprovement of transduction efficiencies up to 2 times was observed. Accelerated reprogramming in microcarrier cultures was 7 days faster than monolayer, providing between 30 and 50‐fold more clones to choose from fibroblasts, peripheral blood mononuclear cells, T cells and CD34+ stem cells. This was observed to be due to an earlier induction of genes (β‐catenin, E‐cadherin and EpCAM) on day 4 versus monolayer cultures which occurred on days 14 or later. Following that, faster induction and earlier stabilization of pluripotency genes occurred during the maturation phase of reprogramming. Integrated expansion without trypsinization and efficient differentiation, without embryoid bodies formation, to the three germ‐layers, cardiomyocytes and haematopoietic stem cells were further demonstrated.ConclusionsOur method can solve the inherent problems of conventional monolayer cultures. It is highly efficient, cell dissociation free, can be operated with lower labor, and allows testing of differentiation efficiency without trypsinization and generation of embryoid bodies. It is also amenable to automation for processing more samples in a small footprint, alleviating many challenges of manual monolayer selection.

We have developed an allied protocol for reprogramming, selecting, expanding and differentiating human pluripotent stem cells on Microcarriers (designated as RepMC). This method allows faster reprogramming, selecting 30‐50‐fold more candidates for characterization and also allows us to find high quality candidates that differentiate to cardiomyocytes and blood lineages. Mechanistically, this method appears to accelerate the induction, maturation and stabilization phases of reprogramming. Our findings help simplify the process of deriving and expanding iPSCs for therapeutic applications, offering a robust and scalable suspension platform for large‐scale generation of clinical grade iPSCs.  相似文献   
58.
59.
Morphometric analyses of retinal sections have been used in examining retinal diseases. For examples, neuronal cells were significantly lost in the retinal ganglion cell layer (RGCL) in rat models with N-methyl-D-aspartate (NMDA)–induced excitotoxicity1, retinal ischemia-reperfusion injury2 and glaucoma3. Reduction of INL and inner plexiform layer (IPL) thicknesses were reversed with citicoline treatment in rats'' eyes subjected to kainic acid-mediated glutamate excitotoxicity4. Alteration of RGC density and soma sizes were observed with different drug treatments in eyes with elevated intraocular pressure3,5,6. Therefore, having objective methods of analyzing the retinal morphometries may be of great significance in evaluating retinal pathologies and the effectiveness of therapeutic strategies.The retinal structure is multi-layers and several different kinds of neurons exist in the retina. The morphometric parameters of retina such as cell number, cell size and thickness of different layers are more complex than the cell culture system. Early on, these parameters can be detected using other commercial imaging software. The values are normally of relative value, and changing to the precise value may need further accurate calculation. Also, the tracing of the cell size and morphology may not be accurate and sensitive enough for statistic analysis, especially in the chronic glaucoma model. The measurements used in this protocol provided a more precise and easy way. And the absolute length of the line and size of the cell can be reported directly and easy to be copied to other files. For example, we traced the margin of the inner and outer most nuclei in the INL and formed a line then using the software to draw a 90 degree angle to measure the thickness. While without the help of the software, the line maybe oblique and the changing of retinal thickness may not be repeatable among individual observers. In addition, the number and density of RGCs can also be quantified. This protocol successfully decreases the variability in quantitating features of the retina, increases the sensitivity in detecting minimal changes. This video will demonstrate three types of morphometric analyses of the retinal sections. They include measuring the INL thickness, quantifying the number of RGCs and measuring the sizes of RGCs in absolute value. These three analyses are carried out with Stereo Investigator (MBF Bioscience — MicroBrightField, Inc.). The technique can offer a simple but scientific platform for morphometric analyses.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号