全文获取类型
收费全文 | 105254篇 |
免费 | 1368篇 |
国内免费 | 898篇 |
专业分类
107520篇 |
出版年
2023年 | 45篇 |
2022年 | 129篇 |
2021年 | 257篇 |
2020年 | 164篇 |
2019年 | 210篇 |
2018年 | 12049篇 |
2017年 | 10811篇 |
2016年 | 7734篇 |
2015年 | 1162篇 |
2014年 | 844篇 |
2013年 | 1030篇 |
2012年 | 5176篇 |
2011年 | 13770篇 |
2010年 | 12569篇 |
2009年 | 8729篇 |
2008年 | 10580篇 |
2007年 | 12158篇 |
2006年 | 1030篇 |
2005年 | 1223篇 |
2004年 | 1718篇 |
2003年 | 1642篇 |
2002年 | 1423篇 |
2001年 | 375篇 |
2000年 | 231篇 |
1999年 | 140篇 |
1998年 | 187篇 |
1997年 | 143篇 |
1996年 | 138篇 |
1995年 | 112篇 |
1994年 | 94篇 |
1993年 | 116篇 |
1992年 | 86篇 |
1991年 | 106篇 |
1990年 | 52篇 |
1989年 | 60篇 |
1988年 | 62篇 |
1987年 | 56篇 |
1986年 | 53篇 |
1985年 | 44篇 |
1984年 | 55篇 |
1983年 | 64篇 |
1982年 | 42篇 |
1981年 | 39篇 |
1980年 | 40篇 |
1979年 | 26篇 |
1978年 | 25篇 |
1976年 | 25篇 |
1972年 | 250篇 |
1971年 | 276篇 |
1962年 | 26篇 |
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
971.
Wojciech Giera Sebastian Szewczyk Michael D. McConnell Kevin E. Redding Rienk van Grondelle Krzysztof Gibasiewicz 《Photosynthesis research》2018,137(2):321-335
Energetic properties of chlorophylls in photosynthetic complexes are strongly modulated by their interaction with the protein matrix and by inter-pigment coupling. This spectral tuning is especially striking in photosystem I (PSI) complexes that contain low-energy chlorophylls emitting above 700 nm. Such low-energy chlorophylls have been observed in cyanobacterial PSI, algal and plant PSI–LHCI complexes, and individual light-harvesting complex I (LHCI) proteins. However, there has been no direct evidence of their presence in algal PSI core complexes lacking LHCI. In order to determine the lowest-energy states of chlorophylls and their dynamics in algal PSI antenna systems, we performed time-resolved fluorescence measurements at 77 K for PSI core and PSI–LHCI complexes isolated from the green alga Chlamydomonas reinhardtii. The pool of low-energy chlorophylls observed in PSI cores is generally smaller and less red-shifted than that observed in PSI–LHCI complexes. Excitation energy equilibration between bulk and low-energy chlorophylls in the PSI–LHCI complexes at 77 K leads to population of excited states that are less red-shifted (by ~?12 nm) than at room temperature. On the other hand, analysis of the detection wavelength dependence of the effective trapping time of bulk excitations in the PSI core at 77 K provided evidence for an energy threshold at ~?675 nm, above which trapping slows down. Based on these observations, we postulate that excitation energy transfer from bulk to low-energy chlorophylls and from bulk to reaction center chlorophylls are thermally activated uphill processes that likely occur via higher excitonic states of energy accepting chlorophylls. 相似文献
972.
Yachao Wang Li Jiang Jian He Mao Hu Fankun Zeng Yuanfeng Li He Tian Xuegang Luo 《Biological trace element research》2018,185(1):170-176
Selenium (Se) is an essential trace element, but excessive intake of Se could induce Se poisoning, and result in various health problems. NF-κB regulated many molecules of the immune response and the inflammatory response, and Th1/Th2 balance played a key in the regulation of immune response. The aim of this study is to investigate the role of NF-κB pathway and Th1/Th2 imbalance in the adverse influence of Se poisoning on chicken spleens. In the current study, 90 chickens were randomly divided into two groups (n?=?45 per group). The chickens were maintained either on a basal diet (the control group) containing 0.2 mg/kg Se or a high supplemented diet (the Se group) containing 15 mg/kg Se for 45 days. Then, we observed the pathohistology of spleen cells and detected NO content, iNOS activity, and the expression of NF-κB, iNOS, COX-2, PTGE, IL-6, TNF-α, Foxp3, IL-4, and IFN-γ in chicken spleens. In chicken spleens of the Se group, the result showed typical characteristics of inflammation: the content of NO and the activity of iNOS were increased, and the expression of NF-κB, iNOS, COX-2, PTGE, IL-6, TNF-α, and IL-4 was enhanced and that of Foxp3 and IFN-γ was decreased. Our study showed that Se toxicity could promote inflammation via NF-κB pathway, impairing the immune function, and changing Th1/Th2 balance in the chicken spleens. 相似文献
973.
In Dictyostelium discoideum, cells that become part of the stalk or basal disc display behaviour that can be interpreted as altruistic. Atzmony et al. (Curr Sci 72:142–145, 1997) had hypothesised that this behaviour could be the outcome of an adaptive strategy based on differing intrinsic quality as reflected by phenotypes that indicate differences in potential for survival and reproduction, followed by intercellular competition among amoebae of differing qualities. Low-quality amoebae would have a poor chance of succeeding in the competition to form spores; they could enhance their chances of survival by adopting a presumptive stalk strategy. Here we extend the hypothesis by making use of recent findings. Our approach is based on the view that an evolutionary explanation for the apparent altruism of stalk cells in D. discoideum must apply broadly to other cellular slime moulds (CSMs) that exhibit stalk cell death. Further, it must be capable of being modified to cover social behaviour in CSMs with an extracellular stalk, as well as in sorocarpic amoebae whose stalk cells are viable. With regard to D. discoideum, we suggest that (a) differentiation-inducing factor, thought of as a signal that inhibits amoebae from forming spores and induces them to differentiate into basal disc cells, is better viewed as a mediator of competition among post-aggregation amoebae and (b) the products of the ‘recognition genes’, tgrB and tgrC, allow an amoeba to assess its quality relative to that of its neighbours and move to a position within the aggregate that optimises its reproductive fitness. From this perspective, all cells behave in a manner that is ‘selfish’ rather than ‘altruistic’, albeit with different expectations of success. 相似文献
974.
Céline Rens Pieter-Jan Ceyssens Françoise Laval Philippe Lefèvre Vanessa Mathys Mamadou Daffé Véronique Fontaine 《Indian journal of microbiology》2018,58(3):393-396
Treatment of tuberculosis still represent a major public health issue. The emergence of multi-and extensively-drug resistant (MDR and XDR) Mycobacterium tuberculosis clinical strains further pinpoint the urgent need for new anti-tuberculous drugs. We previously showed that vancomycin can target mycobacteria lacking cell wall integrity, especially those lacking related phthiocerol and phthiodolone dimycocerosates, PDIM A and PDIM B, respectively. As aloe emodin was previously hypothesized to be able to target the synthesis of mycobacterial cell wall lipids, we tested its ability to potentiate glycopeptides antimycobacterial activity. The aloe emodin with the vancomycin induced a combination effect beyond simple addition, close to synergism, at a concentration lower to reported IC50 cytotoxic value, on M. bovis BCG and on H37Rv M. tuberculosis. Interestingly, out of six MDR and pre-XDR clinical strains, one showed a strong synergic susceptibility to the drug combination. Mycobacterial cell wall lipid analyses highlighted a selective reduction of PDIM B by aloe emodin. 相似文献
975.
Predictors of cryptogamic wood-inhabiting communities need to be examined to understand the drivers of forest biodiversity. We estimated the influence of bark cover on the wood-inhabiting vegetation on conifer logs in early stages of epixylic succession in mature European boreal and hemi-boreal forests. Abundance of substrate groups with respect to log attributes was estimated with generalized linear and generalized linear mixed models. The structure and composition of epixylic communities was analysed using non-metric multidimensional scaling with subsequent environmental fitting. The abundance of true epixylics was inversely related to bark cover. In the first stage, bark cover did not influence the abundance of epiphytes and epigeous species; positively influenced the abundance of facultative epixylics on spruce logs and negatively influenced it on pine logs. In the second stage, the effect of bark cover was positive for epiphytes and epigeous species on spruce logs and for facultative epixylics independent of log species identity and negative for epigeous species on pine logs. Generalist species did not depend on bark cover. Total cover of wood-inhabiting vegetation was marginally influenced by bark cover. The effect of bark cover on epixylic vegetation at community level was negligible. In general, bark cover favours the establishment and growth of species with low substrate specificity. This preference may lead to either burial of logs by epigeous bryophytes, or facilitation of succession towards the dominance of ground vegetation. 相似文献
976.
977.
Fang-Yu Liu Te-Cheng Hsu Patrick Choong Min-Hsuan Lin Yung-Jen Chuang Bor-Sen Chen Che Lin 《BMC systems biology》2018,12(2):29
Background
Regeneration is an important biological process for the restoration of organ mass, structure, and function after damage, and involves complex bio-physiological mechanisms including cell differentiation and immune responses. We constructed four regenerative protein-protein interaction (PPI) networks using dynamic models and AIC (Akaike’s Information Criterion), based on time-course microarray data from the regeneration of four zebrafish organs: heart, cerebellum, fin, and retina. We extracted core and organ-specific proteins, and proposed a recalled-blastema-like formation model to uncover regeneration strategies in zebrafish.Results
It was observed that the core proteins were involved in TGF-β signaling for each step in the recalled-blastema-like formation model and TGF-β signaling may be vital for regeneration. Integrins, FGF, and PDGF accelerate hemostasis during heart injury, while Bdnf shields retinal neurons from secondary damage and augments survival during the injury response. Wnt signaling mediates the growth and differentiation of cerebellum and fin neural stem cells, potentially providing a signal to trigger differentiation.Conclusion
Through our analysis of all four zebrafish regenerative PPI networks, we provide insights that uncover the underlying strategies of zebrafish organ regeneration.978.
Timothy Hoggard Erika Shor Carolin A. Müller Conrad A. Nieduszynski Catherine A. Fox 《PLoS genetics》2013,9(9)
Eukaryotic DNA replication origins are selected in G1-phase when the origin recognition complex (ORC) binds chromosomal positions and triggers molecular events culminating in the initiation of DNA replication (a.k.a. origin firing) during S-phase. Each chromosome uses multiple origins for its duplication, and each origin fires at a characteristic time during S-phase, creating a cell-type specific genome replication pattern relevant to differentiation and genome stability. It is unclear whether ORC-origin interactions are relevant to origin activation time. We applied a novel genome-wide strategy to classify origins in the model eukaryote Saccharomyces cerevisiae based on the types of molecular interactions used for ORC-origin binding. Specifically, origins were classified as DNA-dependent when the strength of ORC-origin binding in vivo could be explained by the affinity of ORC for origin DNA in vitro, and, conversely, as ‘chromatin-dependent’ when the ORC-DNA interaction in vitro was insufficient to explain the strength of ORC-origin binding in vivo. These two origin classes differed in terms of nucleosome architecture and dependence on origin-flanking sequences in plasmid replication assays, consistent with local features of chromatin promoting ORC binding at ‘chromatin-dependent’ origins. Finally, the ‘chromatin-dependent’ class was enriched for origins that fire early in S-phase, while the DNA-dependent class was enriched for later firing origins. Conversely, the latest firing origins showed a positive association with the ORC-origin DNA paradigm for normal levels of ORC binding, whereas the earliest firing origins did not. These data reveal a novel association between ORC-origin binding mechanisms and the regulation of origin activation time. 相似文献
979.
Timothy A. Reinhardt Ronald L. Horst E.Travis Littledike Donald C. Beitz 《Biochemical and biophysical research communications》1982,106(3):1012-1018
1,25-Dihydroxyvitamin D3 [1,25-(OH)2D3] receptor was characterized after partial purification of thymus cytosol by ammonium sulfate fractionation. The 1,25-(OH)2D3 receptor sediments at 3.7S in 5–20% sucrose gradients. The binding of 1,25-(OH)2D3 in thymic cytosol was a saturable process with high affinity (Kd = 0.12?0.48 nM) at 4°C. Competition for 1,25-(OH)2[3H]D3 receptor by nonradioactive analogs demonstrated the affinities of these analogs to be in order; 1,25-(OH)2D3 = 1,24R,25-(OH)3D3 = 1,25S,26-(OH)3D3 = 1,25R,26-(OH)3D3 > 1,25-(OH)2D3-26,23 lactone > 25-OHD3 > 23R,25-(OH)2D3 > 24R,25-(OH)2D3 > 23S,25-(OH)2D3 ? 25-OHD3-26,23 lactone. The receptor bound to DNA cellulose columns in low salt buffer and eluted as a single peak at 0.21 M KCl. These findings provide evidence that the thymus possesses a 1,25-(OH)2D3 receptor with properties indistinguishable from 1,25-(OH)2D3 receptors in other tissues. 相似文献
980.
Leboucher GP Tsai YC Yang M Shaw KC Zhou M Veenstra TD Glickman MH Weissman AM 《Molecular cell》2012,47(4):547-557
Mitochondria play central roles in integrating pro- and antiapoptotic stimuli, and JNK is well known to have roles in activating apoptotic pathways. We establish a critical link between stress-induced JNK activation, mitofusin 2, which is an essential component of the mitochondrial outer membrane fusion apparatus, and the ubiquitin-proteasome system (UPS). JNK phosphorylation of mitofusin 2 in response to cellular stress leads to recruitment of the ubiquitin ligase (E3) Huwe1/Mule/ARF-BP1/HectH9/E3Histone/Lasu1 to mitofusin 2, with the BH3 domain of Huwe1 implicated in this interaction. This results in ubiquitin-mediated proteasomal degradation of mitofusin 2, leading to mitochondrial fragmentation and enhanced apoptotic cell death. The stability of a nonphosphorylatable mitofusin 2 mutant is unaffected by stress and protective against apoptosis. Conversely, a mitofusin 2 phosphomimic is more rapidly degraded without cellular stress. These findings demonstrate how proximal signaling events can influence both mitochondrial dynamics and apoptosis through phosphorylation-stimulated degradation of the mitochondrial fusion machinery. 相似文献