首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   180篇
  免费   23篇
  203篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   7篇
  2014年   2篇
  2013年   12篇
  2012年   16篇
  2011年   8篇
  2010年   10篇
  2009年   8篇
  2008年   11篇
  2007年   7篇
  2006年   9篇
  2005年   15篇
  2004年   8篇
  2003年   7篇
  2002年   5篇
  2001年   7篇
  2000年   4篇
  1999年   8篇
  1998年   6篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1992年   5篇
  1991年   7篇
  1990年   4篇
  1989年   2篇
  1988年   4篇
  1987年   2篇
  1986年   5篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1980年   3篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1969年   1篇
排序方式: 共有203条查询结果,搜索用时 15 毫秒
11.
Metallothioneins are a class of cysteine-rich and low molecular weight, metal-binding proteins that are inducible by a wide variety of agents, including metal ions, such as cadmium and zinc, glucocorticoid hormones, interferon, and tumor promoters. In an effort to delineate the regulation of the synthesis of the recently identified brain metallothionein-like protein, a study was undertaken to compare the induction of metallothionein in human neuroblastoma IMR-32 cells by zinc, cadmium, and dexamethasone using the human Chang liver cells as a control. Both cadmium (1 microM) and zinc (100 microM) significantly enhanced the incorporation of [35S]cysteine into metallothioneins isolated from both neuroblastoma and Chang liver cells. Dexamethasone in concentrations of 10 microM stimulated the synthesis of metallothionein in the Chang cells, whereas it had no effects on the synthesis of metallothionein in the neuroblastoma cells at concentrations ranging from 2.5--100 microM. The degree of stimulation of metallothionein synthesis in the Chang cells by cadmium and zinc was significantly higher than seen in neuroblastoma cells. The neuroblastoma IMR-32 exhibited less tolerance to the toxicity of both cadmium and zinc than the Chang cells, which may correlate with the inherent ability of these ions to induce metallothioneins in these dissimilar cells. The results of these studies are interpreted to indicate that the factors regulating the synthesis of metallothioneins in the Chang and neuroblastoma cells are not identical, suggesting also of the presence of dissimilar regulatory mechanisms in the liver and brain.  相似文献   
12.
13.
The mechanisms that allow psychrophilic bacteria to remain metabolically active at subzero temperatures result from form and function of their proteins. We present first proteomic evidence of physiological changes of the marine psychrophile Colwellia psychrerythraea 34H (Cp34H) after exposure to subzero temperatures (?1, and ?10°C in ice) through 8 weeks. Protein abundance was compared between different treatments to understand the effects of temperature and time, independently and jointly, within cells transitioning to, and being maintained in ice. Parallel [3H]‐leucine and [3H]–thymidine incubations indicated active protein and DNA synthesis to ?10°C. Mass spectrometry‐based proteomics identified 1763 proteins across four experimental treatments. Proteins involved in osmolyte regulation and polymer secretion were found constitutively present across all treatments, suggesting that they are required for metabolic success below 0°C. Differentially abundant protein groups indicated a reallocation of resources from DNA binding to DNA repair and from motility to chemo‐taxis and sensing. Changes to iron and nitrogen metabolism, cellular membrane structures, and protein synthesis and folding were also revealed. By elucidating vital strategies during life in ice, this study provides novel insight into the extensive molecular adaptations that occur in cold‐adapted marine organisms to sustain cellular function in their habitat.  相似文献   
14.
Pacific geoducks (Panopea generosa) are clams found along the northeast Pacific coast where they are important components of coastal and estuarine ecosystems and a major aquaculture product. The Pacific coastline, however, is also experiencing rapidly changing ocean habitat, including significant reductions in pH. To better understand the physiological impact of ocean acidification on geoduck clams, we characterized for the first time the proteomic profile of this bivalve during larval development and compared it to that of larvae exposed to low pH conditions. Geoduck larvae were reared at pH 7.5 (ambient) or pH 7.1 in a commercial shellfish hatchery from day 6 to day 19 postfertilization and sampled at six time points for an in‐depth proteomics analysis using high‐resolution data‐dependent analysis. Larvae reared at low pH were smaller than those reared at ambient pH, especially in the prodissoconch II phase of development, and displayed a delay in their competency for settlement. Proteomic profiles revealed that metabolic, cell cycle, and protein turnover pathways differed between the two pH and suggested that differing phenotypic outcomes between pH 7.5 and 7.1 are likely due to environmental disruptions to the timing of physiological events. In summary, ocean acidification results in elevated energetic demand on geoduck larvae, resulting in delayed development and disruptions to normal molecular developmental pathways, such as carbohydrate metabolism, cell growth, and protein synthesis.  相似文献   
15.
BACKGROUND: Direct protein transduction is a recent technique that involves use of peptide vectors. In this study, we demonstrate that adenovirus dodecahedron (Dd), a virus-like particle devoid of DNA and able to penetrate cells with high efficiency, can be used as a vector for protein delivery. METHODS: Taking advantage of Dd interaction with structural domains called WW, we have elaborated a universal adaptor to attach a protein of interest to this vector. RESULTS: A tandem of three WW structural domains derived from the Nedd4 protein enables the formation of stable complexes with Dd, without impairing its endocytosis efficiency. Our protein of interest fused to the triple WW linker is delivered by the dodecahedron in 100% of cells in culture with on average more than ten million molecules per cell. CONCLUSION: These data demonstrate the great potential of adenovirus dodecahedron in combination with WW domains as a protein transduction vector.  相似文献   
16.
A previous report that the spin trap 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide (DEPMPO) allows DEPMPO radical cation formation to be detected via the production of a carbon-centred radical adduct (assigned as the cis-hydroxyethyl species, formed by an intramolecular process) is shown to be incorrect. Rather, this and other paramagnetic species arise from the facile oxidation of trace hydroxylamine impurities present in commercial DEPMPO samples. As a result, techniques for the detection and elimination of such hydroxylamine impurities from DEPMPO solutions were developed and are described; these should prove to be of general use in EPR spin trapping experiments.  相似文献   
17.
Diatoms possess effective photoprotection mechanisms, which may involve reorganizations in the photosynthetic machinery. We have shown earlier, by using circular dichroism (CD) spectroscopy, that in Phaeodactylum tricornutum the pigment-protein complexes are arranged into chiral macrodomains, which have been proposed to be associated with the multilamellar organization of the thylakoid membranes and shown to be capable of undergoing light-induced reversible reorganizations (Szabó et al. Photosynth Res 95:237, 2008). Recently, by using small-angle neutron scattering (SANS) on the same algal cells we have determined the repeat distances and revealed reversible light-induced reorganizations in the lamellar order of thylakoids (Nagy et al. Biochem J 436:225, 2011). In this study, we show that in moderately heat-treated samples, the weakening of the lamellar order is accompanied by the diminishment of the psi-type CD signal associated with the long-range chiral order of the chromophores (psi, polymer or salt-induced). Further, we show that the light-induced reversible increase in the psi-type CD is associated with swelling in the membrane system, with magnitudes larger in high light than in low light. In contrast, shrinkage of the membrane system, induced by sorbitol, brings about a decrease in the psi-type CD signal; this shrinkage also diminishes the non-photochemical quenching capability of the cells. These data shed light on the origin of the psi-type CD signal, and confirm that both CD spectroscopy and SANS provide valuable information on the macro-organization of the thylakoid membranes and their dynamic properties; these parameters are evidently of interest with regard to the photoprotection in whole algal cells.  相似文献   
18.
Over the last two decades, important insights into our understanding of plant ecology and the communicative nature of plants have not only confirmed the existence of a wide range of communication means used by plants, but most excitingly have indicated that more modalities remain to be discovered. In fact, we have recently found that seeds and seedlings of the chili plant, Capsicum annuum, are able to sense neighbors and identify relatives using alternative mechanisms beyond previously studied channels of plant communication. In this addendum, we offer a hypothetical mechanistic explanation as to how plants may do this by quantum-assisted magnetic and/or acoustic sensing and signaling. If proven correct, this hypothesis prompts for a re-interpretation of our current understanding of plasticity in germination and growth of plants and more generally, calls for developing a new perspective of these biological phenomena.  相似文献   
19.
20.
Macrophage-specific Abca1 knock-out (Abca1(-)(M)(/-)(M)) mice were generated to determine the role of macrophage ABCA1 expression in plasma lipoprotein concentrations and the innate immune response of macrophages. Plasma lipid and lipoprotein concentrations in chow-fed Abca1(-)(M)(/-)(M) and wild-type (WT) mice were indistinguishable. Compared with WT macrophages, Abca1(-)(M)(/-)(M) macrophages had a >95% reduction in ABCA1 protein, failed to efflux lipid to apoA-I, and had a significant increase in free cholesterol (FC) and membrane lipid rafts without induction of endoplasmic reticulum stress. Lipopolysaccharide (LPS)-treated Abca1(-)(M)(/-)(M) macrophages exhibited enhanced expression of pro-inflammatory cytokines and increased activation of the NF-kappaB and MAPK pathways, which could be diminished by silencing MyD88 or by chemical inhibition of NF-kappaB or MAPK. In vivo LPS injection also resulted in a higher pro-inflammatory response in Abca1(-)(M)(/-)(M) mice compared with WT mice. Furthermore, cholesterol depletion of macrophages with methyl-beta-cyclodextrin normalized FC content between the two genotypes and their response to LPS; cholesterol repletion of macrophages resulted in increased cellular FC accumulation and enhanced cellular response to LPS. Our results suggest that macrophage ABCA1 expression may protect against atherosclerosis by facilitating the net removal of excess lipid from macrophages and dampening pro-inflammatory MyD88-dependent signaling pathways by reduction of cell membrane FC and lipid raft content.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号