首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4650篇
  免费   342篇
  国内免费   1篇
  4993篇
  2024年   3篇
  2023年   33篇
  2022年   77篇
  2021年   128篇
  2020年   53篇
  2019年   83篇
  2018年   114篇
  2017年   133篇
  2016年   173篇
  2015年   234篇
  2014年   277篇
  2013年   338篇
  2012年   429篇
  2011年   432篇
  2010年   235篇
  2009年   174篇
  2008年   260篇
  2007年   277篇
  2006年   261篇
  2005年   277篇
  2004年   232篇
  2003年   197篇
  2002年   176篇
  2001年   57篇
  2000年   23篇
  1999年   33篇
  1998年   44篇
  1997年   20篇
  1996年   18篇
  1995年   22篇
  1994年   11篇
  1993年   15篇
  1992年   14篇
  1991年   15篇
  1990年   12篇
  1989年   8篇
  1988年   12篇
  1987年   16篇
  1986年   7篇
  1985年   7篇
  1984年   7篇
  1983年   6篇
  1982年   6篇
  1981年   7篇
  1980年   6篇
  1977年   5篇
  1976年   7篇
  1974年   4篇
  1973年   3篇
  1967年   2篇
排序方式: 共有4993条查询结果,搜索用时 0 毫秒
81.
The mechanisms that allow psychrophilic bacteria to remain metabolically active at subzero temperatures result from form and function of their proteins. We present first proteomic evidence of physiological changes of the marine psychrophile Colwellia psychrerythraea 34H (Cp34H) after exposure to subzero temperatures (?1, and ?10°C in ice) through 8 weeks. Protein abundance was compared between different treatments to understand the effects of temperature and time, independently and jointly, within cells transitioning to, and being maintained in ice. Parallel [3H]‐leucine and [3H]–thymidine incubations indicated active protein and DNA synthesis to ?10°C. Mass spectrometry‐based proteomics identified 1763 proteins across four experimental treatments. Proteins involved in osmolyte regulation and polymer secretion were found constitutively present across all treatments, suggesting that they are required for metabolic success below 0°C. Differentially abundant protein groups indicated a reallocation of resources from DNA binding to DNA repair and from motility to chemo‐taxis and sensing. Changes to iron and nitrogen metabolism, cellular membrane structures, and protein synthesis and folding were also revealed. By elucidating vital strategies during life in ice, this study provides novel insight into the extensive molecular adaptations that occur in cold‐adapted marine organisms to sustain cellular function in their habitat.  相似文献   
82.
Trichoderma species isolated from water-damaged buildings were screened for toxicity by using boar sperm cells as indicator cells. The crude methanolic cell extract from Trichoderma harzianum strain ES39 inhibited the boar sperm cell motility at a low exposure concentration (50% effective concentration, 1 to 5 μg [dry weight] ml of extended boar semen−1). The same exposure concentration depleted the boar sperm cells of NADH2. Inspection of the exposed boar sperm cells by transmission electron microscopy revealed damage to the plasma membrane. By using the black lipid membrane technique, it was shown that the semipurified metabolites (eluted from a SepPak C18 cartridge) of T. harzianum strain ES39 induced voltage-dependent conductivity. The high-performance liquid chromatography-purified metabolites of T. harzianum strain ES39 dissipated the mitochondrial membrane potential (Δψm) of human lung epithelial carcinoma cells (cell line A549). The semipurified metabolites (eluted from a SepPak C18 cartridge) of T. harzianum strain ES39 were analyzed by mass spectrometry (MS). Matrix-assisted laser desorption ionization and nanoflow electrospray ionization MS revealed five major peptaibols, each of which contained 18 residues and had a mass ranging from 1,719 to 1,775 Da. Their partial amino acid sequences were determined by collision-induced dissociation tandem MS.  相似文献   
83.
Inactivation of the von Hippel-Lindau (VHL) tumor suppressor gene is linked to the development of tumors of the eyes, kidneys, and central nervous system. VHL encodes two gene products, pVHL30 and pVHL19, of which one, pVHL30, associates functionally with microtubules (MTs) to regulate their stability. Here we report that pVHL30 is a novel substrate of glycogen synthase kinase 3 (GSK3) in vitro and in vivo. Phosphorylation of pVHL on serine 68 (S68) by GSK3 requires a priming phosphorylation event at serine 72 (S72) mediated in vitro by casein kinase I. Functional analysis of pVHL species carrying nonphosphorylatable or phosphomimicking mutations at S68 and/or S72 reveals a central role for these phosphorylation events in the regulation of pVHL's MT stabilization (but not binding) activity. Taken together, our results identify pVHL as a novel priming-dependent substrate of GSK3 and suggest a dual-kinase mechanism in the control of pVHL's MT stabilization function. Since GSK3 is a component of multiple signaling pathways that are altered in human cancer, our results further imply that normal operation of the GSK3-pVHL axis may be a critical aspect of pVHL's tumor suppressor mechanism through the regulation of MT dynamics.  相似文献   
84.
85.
Interleukin-2 tyrosine kinase, Itk, is an important member of the Tec family of non-receptor tyrosine kinases that play a central role in signaling through antigen receptors such as the T-cell receptor, B-cell receptor, and Fcepsilon. Selective inhibition of Itk may be an important way of modulating many diseases involving heightened or inappropriate activation of the immune system. In addition to an unliganded nonphophorylated Itk catalytic kinase domain, we determined the crystal structures of the phosphorylated and nonphosphorylated kinase domain bound to staurosporine, a potent broad-spectrum kinase inhibitor. These structures are useful for the design of novel, highly potent and selective Itk inhibitors and provide insight into the influence of inhibitor binding and phosphorylation on the conformation of Itk.  相似文献   
86.
The fungus Venturia inaequalis infects members of the Maloideae, and causes the disease apple scab, the most important disease of apple worldwide. The early elucidation of the gene-for-gene relationship between V. inaequalis and its host Malus has intrigued plant pathologists ever since, with the identification of 17 resistance (R)-avirulence (Avr) gene pairings. The Avr gene products are presumably a subset of the total effector arsenal of V. inaequalis (predominantly proteins secreted in planta assumed to facilitate infection). The supposition that effectors from V. inaequalis act as suppressors of plant defence is supported by the ability of the pathogen to penetrate the cuticle and differentiate into large pseudoparenchymatous structures, termed stromata, in the subcuticular space, without the initiation of an effective plant defence response. If effectors can be identified that are essential for pathogenicity, the corresponding R genes will be durable and would add significant value to breeding programmes. An R gene cluster in Malus has been cloned, but no V. inaequalis effectors have been characterized at the molecular level. However, the identification of effectors is likely to be facilitated by the resolution of the whole genome sequence of V. inaequalis. TAXONOMY: Teleomorph: Venturia inaequalis Cooke (Wint.); Kingdom Fungi; Phylum Ascomycota; Subphylum Euascomycota; Class Dothideomycetes; Family Venturiaceae; genus Venturia; species inaequalis. Anamorph: Fusicladium pomi (Fr.) Lind or Spilocaea pomi (Fr.). LIFE CYCLE: V. inaequalis is a hemibiotroph and overwinters as pseudothecia (sexual fruiting bodies) following a phase of saprobic growth in fallen leaf tissues. The primary inoculum consists of ascospores, which germinate and penetrate the cuticle. Stromata are formed above the epidermal cells but do not penetrate them. Cell wall-degrading enzymes are only produced late in the infection cycle, raising the as yet unanswered question as to how V. inaequalis gains nutrients from the host. Conidia (secondary inoculum) arise from the upper surface of the stromata, and are produced throughout the growing season, initiating multiple rounds of infection. VENTURIA INAEQUALIS AS A MODEL PATHOGEN OF A WOODY HOST: V. inaequalis can be cultured and is amenable to crossing in vitro, enabling map-based cloning strategies. It can be transformed readily, and functional analyses can be conducted by gene silencing. Expressed sequence tag collections are available to aid in gene identification. These will be complemented by the whole genome sequence, which, in turn, will contribute to the comparative analysis of different races of V. inaequalis and plant pathogens within the Dothideomycetes.  相似文献   
87.
88.
Activity patterns and perceptions play a key role in human health risk, management, and planning. A sample of 233 people attending a Native American festival in Cookeville, Tennessee was interviewed to determine the types, percent participation, and outdoor activities rates, and their perceptions of the importance of characteristics of nuclear sites. Results indicate that: (1) a high percentage of respondents used outdoor environments, (2) they used them for consumptive (hunting, fishing), non-consumptive (hiking, walking, bird-watching), and religious/sacred activities, (3) a higher percentage of respondents engaged in non-consumptive than consumptive activities, (4) praying or meditating, communing with nature, and bird-watching had the highest uses rates (5) the environmental characteristics rated the highest were lack of radionuclides that presented a health risk, no visible smog, clean air, and unpolluted water, (6) the presence of people, buildings and roads were rated the lowest, and (7) Native Americans had higher outdoor participation rates, participated more frequently, and evaluated environmental characteristics higher than did Caucasians. This information can be used by managers to create and maintain outdoor habitats that fit the needs of local people. Planning and management require information on public policy, human needs and requirements, and human perceptions and evaluations of environmental characteristics.  相似文献   
89.
90.
Landscape genomics studies focus on identifying candidate genes under selection via spatial variation in abiotic environmental variables, but rarely by biotic factors (i.e., disease). The Tasmanian devil (Sarcophilus harrisii) is found only on the environmentally heterogeneous island of Tasmania and is threatened with extinction by a transmissible cancer, devil facial tumor disease (DFTD). Devils persist in regions of long-term infection despite epidemiological model predictions of species’ extinction, suggesting possible adaptation to DFTD. Here, we test the extent to which spatial variation and genetic diversity are associated with the abiotic environment (i.e., climatic variables, elevation, vegetation cover) and/or DFTD. We employ genetic-environment association analyses using 6886 SNPs from 3287 individuals sampled pre- and post-disease arrival across the devil's geographic range. Pre-disease, we find significant correlations of allele frequencies with environmental variables, including 365 unique loci linked to 71 genes, suggesting local adaptation to abiotic environment. The majority of candidate loci detected pre-DFTD are not detected post-DFTD arrival. Several post-DFTD candidate loci are associated with disease prevalence and were in linkage disequilibrium with genes involved in tumor suppression and immune response. Loss of apparent signal of abiotic local adaptation post-disease suggests swamping by strong selection resulting from the rapid onset of DFTD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号