首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7345篇
  免费   769篇
  国内免费   6篇
  2023年   36篇
  2022年   55篇
  2021年   179篇
  2020年   117篇
  2019年   153篇
  2018年   186篇
  2017年   170篇
  2016年   275篇
  2015年   379篇
  2014年   448篇
  2013年   485篇
  2012年   627篇
  2011年   623篇
  2010年   394篇
  2009年   336篇
  2008年   456篇
  2007年   455篇
  2006年   391篇
  2005年   339篇
  2004年   327篇
  2003年   290篇
  2002年   295篇
  2001年   114篇
  2000年   112篇
  1999年   98篇
  1998年   85篇
  1997年   53篇
  1996年   55篇
  1995年   39篇
  1994年   38篇
  1993年   34篇
  1992年   50篇
  1991年   43篇
  1990年   41篇
  1989年   41篇
  1988年   24篇
  1987年   35篇
  1986年   33篇
  1985年   28篇
  1984年   19篇
  1983年   15篇
  1982年   16篇
  1981年   16篇
  1980年   11篇
  1979年   15篇
  1978年   11篇
  1977年   11篇
  1975年   9篇
  1974年   10篇
  1971年   8篇
排序方式: 共有8120条查询结果,搜索用时 15 毫秒
111.
112.
Ligand binding triggers clathrin-mediated and, at high ligand concentrations, clathrin-independent endocytosis of EGFR. Clathrin-mediated endocytosis (CME) of EGFR is also induced by stimuli activating p38 MAPK. Mechanisms of both ligand- and p38-induced endocytosis are not fully understood, and how these pathways intermingle when concurrently activated remains unknown. Here we dissect the mechanisms of p38-induced endocytosis using a pH-sensitive model of endogenous EGFR, which is extracellularly tagged with a fluorogen-activating protein, and propose a unifying model of the crosstalk between multiple EGFR endocytosis pathways. We found that a new locus of p38-dependent phosphorylation in EGFR is essential for the receptor dileucine motif interaction with the σ2 subunit of clathrin adaptor AP2 and concomitant receptor internalization. p38-dependent endocytosis of EGFR induced by cytokines was additive to CME induced by picomolar EGF concentrations but constrained to internalizing ligand-free EGFRs due to Grb2 recruitment by ligand-activated EGFRs. Nanomolar EGF concentrations rerouted EGFR from CME to clathrin-independent endocytosis, primarily by diminishing p38-dependent endocytosis.  相似文献   
113.
In computational structural biology, structure comparison is fundamental for our understanding of proteins. Structure comparison is, e.g., algorithmically the starting point for computational studies of structural evolution and it guides our efforts to predict protein structures from their amino acid sequences. Most methods for structural alignment of protein structures optimize the distances between aligned and superimposed residue pairs, i.e., the distances traveled by the aligned and superimposed residues during linear interpolation. Considering such a linear interpolation, these methods do not differentiate if there is room for the interpolation, if it causes steric clashes, or more severely, if it changes the topology of the compared protein backbone curves. To distinguish such cases, we analyze the linear interpolation between two aligned and superimposed backbones. We quantify the amount of steric clashes and find all self-intersections in a linear backbone interpolation. To determine if the self-intersections alter the protein’s backbone curve significantly or not, we present a path-finding algorithm that checks if there exists a self-avoiding path in a neighborhood of the linear interpolation. A new path is constructed by altering the linear interpolation using a novel interpretation of Reidemeister moves from knot theory working on three-dimensional curves rather than on knot diagrams. Either the algorithm finds a self-avoiding path or it returns a smallest set of essential self-intersections. Each of these indicates a significant difference between the folds of the aligned protein structures. As expected, we find at least one essential self-intersection separating most unknotted structures from a knotted structure, and we find even larger motions in proteins connected by obstruction free linear interpolations. We also find examples of homologous proteins that are differently threaded, and we find many distinct folds connected by longer but simple deformations. TM-align is one of the most restrictive alignment programs. With standard parameters, it only aligns residues superimposed within 5 Ångström distance. We find 42165 topological obstructions between aligned parts in 142068 TM-alignments. Thus, this restrictive alignment procedure still allows topological dissimilarity of the aligned parts. Based on the data we conclude that our program ProteinAlignmentObstruction provides significant additional information to alignment scores based solely on distances between aligned and superimposed residue pairs.  相似文献   
114.
Ravenna grass, Tripidium ravennae (L.) H. Scholz, is known to produce an abundance of biomass, but how plant density affects its biomass potential remains unknown. The objectives were to determine the effects of plant density on biomass yield; plant growth traits; biomass?carbon, nitrogen, and ash concentrations; heating value; nitrogen removal; and sucrose concentration in leaves and culms. The treatments consisted of five plant densities (1,250; 2,500; 5,000; 10,000; and 20,000 plants per hectare) in a randomized complete block design with four blocks. Plots were nonirrigated, unfertilized, and harvested once during the dormant season each year. Data were collected from 2015?2019. Dependent variables that varied with plant population density (p < .05) were biomass yield, number of reproductive culms per plant, reproductive culm diameter, reproductive culm sucrose concentration, and nitrogen removal with biomass. Biomass yield ranged from 5.6 to 16.3 Mg/ha for plant densities of 1,250–20,000 plants per hectare, respectively. Combined over years, nonlinear regression of the data showed the equation for biomass yield to plateau at 16.2 Mg/ha at a plant density of 10,640 plants per hectare. As plant density increased, the number of reproductive culms per plant, culm diameter, and culm sucrose concentration significantly decreased. At 1,250 plants per hectare, the number of reproductive culms per plant, culm diameter, and culm sucrose averaged 70, 10.2 mm, and 63.2 g/kg, respectively. Nitrogen removed with biomass significantly increased as biomass yield increased with plant density. At a density of 10,000 and 20,000 plants per hectare, the amount of nitrogen removed annually in the harvested biomass averaged 88 kg/ha. The data suggest that 10,000 plants per hectare would produce the greatest annual biomass yields; however, research is needed to determine the nutrient requirement for Ravenna grass to sustain biomass production at that density.  相似文献   
115.
Molecular Breeding - Plant height is vital for crop yield by influencing plant architecture and resistance to lodging. Although lots of quantitative trait loci (QTLs) controlling plant height had...  相似文献   
116.
Bell  Kristian  Driscoll  Don A.  Patykowski  John  Doherty  Tim S. 《Ecosystems》2021,24(6):1516-1530
Ecosystems - Native biodiversity often depends on remnant vegetation for survival in agricultural landscapes. However, the size and shape of remnant patches can affect their conservation values...  相似文献   
117.
Phosphatidylinositol is the parent lipid for the synthesis of seven phosphorylated inositol lipids and each of them play specific roles in numerous processes including receptor-mediated signalling, actin cytoskeleton dynamics and membrane trafficking. PI synthesis is localised to the endoplasmic reticulum (ER) whilst its phosphorylated derivatives are found in other organelles where the lipid kinases also reside. Phosphorylation of PI to phosphatidylinositol (4,5) bisphosphate (PI(4,5)P2) at the plasma membrane and to phosphatidylinositol 4-phosphate (PI4P) at the Golgi are key events in lipid signalling and Golgi function respectively. Here we review a family of proteins, phosphatidylinositol transfer proteins (PITPs), that can mobilise PI from the ER to provide the substrate to the resident kinases for phosphorylation. Recent studies identify specific and overlapping functions for the three soluble PITPs (PITPα, PITPβ and PITPNC1) in phospholipase C signalling, neuronal function, membrane trafficking, viral replication and in cancer metastases.  相似文献   
118.
Ecological systems are no longer at equilibrium, but over much of the history of the Earth, the natural world has been in stationary states, that are punctuated by periods of transience. Just because we have knocked our planet away from a stable state, doesn't mean we have to abandon the concept of equilibrium when we strive to understand the dynamics of the natural world.  相似文献   
119.
The lizard genus Phymaturus is widely distributed in Argentina and along the eastern edge of Chile between 25° and 45° south. We sampled 27 of the 38 currently recognized species plus 22 candidate species using two mitochondrial genes (cytb and 12S), four protein coding nuclear genes and seven anonymous nuclear loci, and present the first comprehensive molecular phylogenetic hypothesis for the clade. We recovered two large clades (the palluma or northern group and patagonicus or southern group) previously recognized on the basis of morphological and mitochondrial sequence evidence, and compared results obtained from concatenated-gene analyses with results of a coalescent-based species-tree approach (BEST). With both methods we identified four main clades within the palluma group (mallimaccii, roigorum, verdugo, and vociferator) and five main clades within the patagonicus group (calcogaster, indistinctus, payuniae, somuncurensis, and spurcus). We found several instances of non-monophyly with cytb and cases of incongruence between mitochondrial vs nuclear data for which we discuss alternative hypotheses. Although with lower support values, combined BEST results are more congruent with concatenated nuclear data than with combined concatenated analyses, suggesting that BEST is less influenced by demographic processes than combined concatenated analyses. We discuss the taxonomic, biogeographic and conservation implications of these results and how the future integration of phylogeographic and morphological approaches will allow the further testing of demographic and biogeographic hypotheses.  相似文献   
120.
The Arabidopsis thaliana Qa-SNARE SYP121 (=SYR1/PEN1) drives vesicle traffic at the plasma membrane of cells throughout the vegetative plant. It facilitates responses to drought, to the water stress hormone abscisic acid, and to pathogen attack, and it is essential for recovery from so-called programmed stomatal closure. How SYP121-mediated traffic is regulated is largely unknown, although it is thought to depend on formation of a fusion-competent SNARE core complex with the cognate partners VAMP721 and SNAP33. Like SYP121, the Arabidopsis Sec1/Munc18 protein SEC11 (=KEULE) is expressed throughout the vegetative plant. We find that SEC11 binds directly with SYP121 both in vitro and in vivo to affect secretory traffic. Binding occurs through two distinct modes, one requiring only SEC11 and SYP121 and the second dependent on assembly of a complex with VAMP721 and SNAP33. SEC11 competes dynamically for SYP121 binding with SNAP33 and VAMP721, and this competition is predicated by SEC11 association with the N terminus of SYP121. These and additional data are consistent with a model in which SYP121-mediated vesicle fusion is regulated by an unusual “handshaking” mechanism of concerted SEC11 debinding and rebinding. They also implicate one or more factors that alter or disrupt SEC11 association with the SYP121 N terminus as an early step initiating SNARE complex formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号