首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5576篇
  免费   534篇
  国内免费   5篇
  2023年   29篇
  2022年   58篇
  2021年   144篇
  2020年   87篇
  2019年   108篇
  2018年   148篇
  2017年   120篇
  2016年   212篇
  2015年   292篇
  2014年   343篇
  2013年   374篇
  2012年   515篇
  2011年   510篇
  2010年   301篇
  2009年   263篇
  2008年   364篇
  2007年   361篇
  2006年   327篇
  2005年   258篇
  2004年   277篇
  2003年   219篇
  2002年   240篇
  2001年   58篇
  2000年   52篇
  1999年   47篇
  1998年   65篇
  1997年   39篇
  1996年   33篇
  1995年   30篇
  1994年   24篇
  1993年   17篇
  1992年   24篇
  1991年   19篇
  1990年   19篇
  1989年   15篇
  1988年   9篇
  1987年   10篇
  1986年   11篇
  1985年   12篇
  1984年   16篇
  1983年   5篇
  1982年   11篇
  1981年   10篇
  1980年   4篇
  1979年   7篇
  1978年   5篇
  1977年   4篇
  1974年   3篇
  1972年   2篇
  1971年   6篇
排序方式: 共有6115条查询结果,搜索用时 175 毫秒
161.
Atomically dispersed Fe–N–C catalysts are considered the most promising precious‐metal‐free alternative to state‐of‐the‐art Pt‐based oxygen reduction electrocatalysts for proton‐exchange membrane fuel cells. The exceptional progress in the field of research in the last ≈30 years is currently limited by the moderate active site density that can be obtained. Behind this stands the dilemma of metastability of the desired FeN4 sites at the high temperatures that are believed to be a requirement for their formation. It is herein shown that Zn2+ ions can be utilized in the novel concept of active‐site imprinting based on a pyrolytic template ion reaction throughout the formation of nitrogen‐doped carbons. As obtained atomically dispersed Zn–N–Cs comprising ZnN4 sites as well as metal‐free N4 sites can be utilized for the coordination of Fe2+ and Fe3+ ions to form atomically dispersed Fe–N–C with Fe loadings as high as 3.12 wt%. The Fe–N–Cs are active electocatalysts for the oxygen reduction reaction in acidic media with an onset potential of E0 = 0.85 V versus RHE in 0.1 m HClO4. Identical location atomic resolution transmission electron microscopy imaging, as well as in situ electrochemical flow cell coupled to inductively coupled plasma mass spectrometry measurements, is employed to directly prove the concept of the active‐site imprinting approach.  相似文献   
162.
163.
Ecosystems - Animals are central to numerous ecological processes that shape the structure and function of ecosystems. It follows that species that are strongly linked to specific functions can...  相似文献   
164.
Ecosystems - Saltmarshes provide many valuable ecosystem services including storage of a large amount of ‘blue carbon’ within their soils. To date, up to 50% of the world’s...  相似文献   
165.
166.
The wild tomato relative Solanum sitiens is a xerophyte endemic to the Atacama Desert of Chile and a potential source of genes for tolerance to drought, salinity and low‐temperature stresses. However, until recently, strong breeding barriers prevented its hybridization and introgression with cultivated tomato, Solanum lycopersicum L. We overcame these barriers using embryo rescue, bridging lines and allopolyploid hybrids, and synthesized a library of introgression lines (ILs) that captures the genome of S. sitiens in the background of cultivated tomato. The IL library consists of 56 overlapping introgressions that together represent about 93% of the S. sitiens genome: 65% in homozygous and 28% in heterozygous (segregating) ILs. The breakpoints of each segment and the gaps in genome coverage were mapped by single nucleotide polymorphism (SNP) genotyping using the SolCAP SNP array. Marker‐assisted selection was used to backcross selected introgressions into tomato, to recover a uniform genetic background, to isolate recombinant sub‐lines with shorter introgressions and to select homozygous genotypes. Each IL contains a single S. sitiens chromosome segment, defined by markers, in the genetic background of cv. NC 84173, a fresh market inbred line. Large differences were observed between the lines for both qualitative and quantitative morphological traits, suggesting that the ILs contain highly divergent allelic variation. Several loci contributing to unilateral incompatibility or hybrid necrosis were mapped with the lines. This IL population will facilitate studies of the S. sitiens genome and expands the range of genetic variation available for tomato breeding and research.  相似文献   
167.
Unsanctioned travel routes through alpine ecosystems can influence water drainage patterns, cause sedimentation of streams, and erode soils. These disturbed areas can take decades to revegetate. In 2012, a volunteer‐driven project restored a 854‐m section of unsanctioned road along the Continental Divide in Colorado, United States. The restored area was seeded with three native grass species and then treated by installing erosion matting or adding supplemental rock cover. Four years later, results suggest that the seeding along with the use of erosion matting or supplemental rock can enhance revegetation. Matting appeared to accumulate litter, and this effect might have contributed to enhanced moisture retention. Treated areas contained 40% of the vegetation cover found on adjacent controls, which averaged 69% vascular plant absolute cover. Recovery on both treatments was markedly higher than published estimates of passive revegetation of disturbed areas measured elsewhere suggesting seeding with added cover or protection led to substantial vegetative cover after 4 years. Two of the 3 seeded grass species, Trisetum spicatum and Poa alpina, dominated the restored plots, composing 81.7% of relative vegetation cover on matting sites and 73.4% of relative cover on rock‐supplemented areas. Presumably due to its preference for moister sites, Deschampsia cespitosa had low establishment rates. Volunteer species, that is species that appeared on their own, contributed 6.3% to the absolute vegetation cover of matting and rock sites, and species such as Minuartia biflora, Minuartia obtusiloba, Poa glauca, and Festuca brachyphylla should be considered for use in future restorations.  相似文献   
168.
169.
Molluscs are extremely diverse invertebrate animals with a rich fossil record, highly divergent life cycles, and considerable economical and ecological importance. Key representatives include worm‐like aplacophorans, armoured groups (e.g. polyplacophorans, gastropods, bivalves) and the highly complex cephalopods. Molluscan origins and evolution of their different phenotypes have largely remained unresolved, but significant progress has been made over recent years. Phylogenomic studies revealed a dichotomy of the phylum, resulting in Aculifera (shell‐less aplacophorans and multi‐shelled polyplacophorans) and Conchifera (all other, primarily uni‐shelled groups). This challenged traditional hypotheses that proposed that molluscs gradually evolved complex phenotypes from simple, worm‐like animals, a view that is corroborated by developmental studies that showed that aplacophorans are secondarily simplified. Gene expression data indicate that key regulators involved in anterior–posterior patterning (the homeobox‐containing Hox genes) lost this function and were co‐opted into the evolution of taxon‐specific novelties in conchiferans. While the bone morphogenetic protein (BMP)/decapentaplegic (Dpp) signalling pathway, that mediates dorso‐ventral axis formation, and molecular components that establish chirality appear to be more conserved between molluscs and other metazoans, variations from the common scheme occur within molluscan sublineages. The deviation of various molluscs from developmental pathways that otherwise appear widely conserved among metazoans provides novel hypotheses on molluscan evolution that can be tested with genome editing tools such as the CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeats‐associated protein9) system.  相似文献   
170.
Repeat marine heat wave‐induced mass coral bleaching has decimated reefs in Seychelles for 35 years, but how coral‐associated microbial diversity (microalgal endosymbionts of the family Symbiodiniaceae and bacterial communities) potentially underpins broad‐scale bleaching dynamics remains unknown. We assessed microbiome composition during the 2016 heat wave peak at two contrasting reef sites (clear vs. turbid) in Seychelles, for key coral species considered bleaching sensitive (Acropora muricata, Acropora gemmifera) or tolerant (Porites lutea, Coelastrea aspera). For all species and sites, we sampled bleached versus unbleached colonies to examine how microbiomes align with heat stress susceptibility. Over 30% of all corals bleached in 2016, half of which were from Acropora sp. and Pocillopora sp. mass bleaching that largely transitioned to mortality by 2017. Symbiodiniaceae ITS2‐sequencing revealed that the two Acropora sp. and P. lutea generally associated with C3z/C3 and C15 types, respectively, whereas C. aspera exhibited a plastic association with multiple D types and two C3z types. 16S rRNA gene sequencing revealed that bacterial communities were coral host‐specific, largely through differences in the most abundant families, Hahellaceae (comprising Endozoicomonas), Rhodospirillaceae, and Rhodobacteraceae. Both Acropora sp. exhibited lower bacterial diversity, species richness, and community evenness compared to more bleaching‐resistant P. lutea and C. aspera. Different bleaching susceptibility among coral species was thus consistent with distinct microbiome community profiles. These profiles were conserved across bleached and unbleached colonies of all coral species. As this pattern could also reflect a parallel response of the microbiome to environmental changes, the detailed functional associations will need to be determined in future studies. Further understanding such microbiome‐environmental interactions is likely critical to target more effective management within oceanically isolated reefs of Seychelles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号