首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   470篇
  免费   48篇
  2023年   1篇
  2022年   1篇
  2021年   6篇
  2020年   4篇
  2019年   6篇
  2018年   9篇
  2017年   10篇
  2016年   12篇
  2015年   27篇
  2014年   24篇
  2013年   32篇
  2012年   29篇
  2011年   31篇
  2010年   23篇
  2009年   22篇
  2008年   22篇
  2007年   25篇
  2006年   41篇
  2005年   35篇
  2004年   33篇
  2003年   24篇
  2002年   27篇
  2001年   11篇
  2000年   9篇
  1999年   6篇
  1998年   11篇
  1997年   5篇
  1994年   4篇
  1993年   4篇
  1992年   5篇
  1991年   2篇
  1990年   3篇
  1987年   4篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1978年   1篇
  1976年   1篇
排序方式: 共有518条查询结果,搜索用时 31 毫秒
81.
82.
Applied Microbiology and Biotechnology - l-Amino acid oxidases (L-AAOs) catalyze the oxidative deamination of l-amino acids to the corresponding α-keto acids, ammonia, and hydrogen peroxide....  相似文献   
83.
84.
85.
Most experimental therapy studies are performed in mice that bear subcutaneous or orthotopic hepatoma but are otherwise healthy and nonfibrotic. The majority of hepatocellular carcinoma (HCC), however, develops in patients suffering from preexisting liver fibrosis. We investigated the efficacy of a standard experimental therapeutic approach to interrupt the vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) cascade via VEGF-A silencing, with or without 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP; cationic lipid) formulation, in HCC mice with preexisting liver fibrosis. The data show that intraperitoneal treatment with naked VEGF-A small interfering RNA (siRNA; 200 microg/kg) was inefficient to treat HCC implanted into fibrotic livers. VEGF-A siRNA containing an immunostimulatory motif in combination with DOTAP formulation significantly reduced hepatic VEGF-A expression and additionally activated the innate and adapted immune system as shown by an increased intrahepatic interferon type 1 response (68-fold increased beta-interferon expression). DOTAP-formulated VEGF-A siRNA markedly improved VEGF-A siRNA uptake and enhanced the antitumor response. This study shows for the first time the therapeutic feasibility of using synergistic effects (gene silencing and activation of the immune system) united in one siRNA sequence to reduce HCC growth and metastasis in mice with preexisting liver fibrosis. We expect that these results will help to direct and improve future experimental gene-silencing approaches and establish more efficient antitumoral therapies against HCC.  相似文献   
86.
87.
88.
Osteoprotegerin (OPG) is a decoy receptor for receptor activator of NF‐κB ligand (RANKL) and TNF‐related apoptosis‐inducing ligand (TRAIL). While RANKL is essential for osteoclastogenesis and facilitates breast cancer migration into bone, TRAIL promotes breast cancer apoptosis. We analyzed the expression of OPG and TRAIL and its modulation in estrogen receptor‐positive MCF‐7 cells and receptor‐negative MDA‐MB‐231 cells. In both cells, OPG mRNA levels and protein secretion were dose‐ and time‐dependently enhanced by interleukin (IL)‐1β and suppressed by dexamethasone. In contrast to MCF‐7 cells, MDA‐MB‐231 abundantly expressed TRAIL mRNA, which was enhanced by IL‐1β and inhibited by dexamethasone. TRAIL activated pro‐apoptotic caspase‐3, ‐7, and poly‐ADP‐ribose polymerase and decreased cell numbers of MDA‐MB‐231, but had no effect on MCF‐7 cells. Gene silencing siRNA directed against OPG resulted in a 31% higher apoptotic rate compared to non‐target siRNA‐treated MDA‐MB‐231 cells. Furthermore, TRAIL induced significantly less apoptosis in cells cultured in conditioned media (containing OPG) compared to cells exposed to TRAIL in fresh medium lacking OPG (P < 0.01) and these protective effects were reversed by blocking OPG with its specific ligand RANKL (P < 0.05). The association between cancer cell survival and OPG production by MDA‐MB‐231 cells was further supported by the finding, that modulation of OPG secretion using IL‐1β or dexamethasone prior to TRAIL exposure resulted in decreased and increased rate of apoptosis, respectively (P < 0.05). Thus, OPG secretion by breast cancer cells is modulated by cytokines and dexamethasone, and may represent a critical resistance mechanism that protects against TRAIL‐induced apoptosis. J. Cell. Biochem. 108: 106–116, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
89.
Light-induced structural changes at the entrance of the chromophore pocket of Agp1 phytochrome were investigated by using a thiol-reactive fluorescein derivative that is covalently attached to the genuine chromophore binding site (Cys-20) and serves as a polarity probe. In the apoprotein, the absorption spectrum of bound fluorescein is red-shifted with respect to that of the free label suggesting that the probe enters the hydrophobic chromophore pocket. Assembly of this construct with the chromophores phycocyanobilin or biliverdin is associated with a blue-shift of the fluorescein absorption band indicating the displacement of the probe out of the pocket. The probe does not affect the photochromic and kinetic properties of the noncovalent bilin adducts. Upon photoconversion to Pfr, the probe spectrum undergoes again a bathochromic shift and a strong rise in CD indicating a more hydrophobic and asymmetric environment. We propose that the environmental changes of the probe reflect conformational changes at the entrance of the chromophore pocket and are indicative for rearrangements of the chromophore ring A. Flash photolysis measurements showed that the absorption changes of the probe are kinetically coupled to the formation of Meta-RC and Pfr. In the biliverdin adduct, an additional component occurs that probably reflects a transition between two Meta-RC substates. Analogous results to that of the noncovalent phycocyanobilin adduct were obtained with the mutant V249C in which probe and chromophore are covalently attached. The conformational changes of the chromophore are correlated to proton transfer to the protein surface.Phytochromes are red-light photoreceptors occurring in plants, bacteria, and fungi where they control important developmental processes (16). The discovery of microbial phytochromes from genome sequencing (79) provided new prospects for biochemical, spectroscopic and structural analyses of this light sensor family. Agp1 (AtBphP1)3 from the soil bacterium Agrobacterium tumefaciens is a typical member of the widespread family of proteobacterial phytochromes (10, 11) and is the subject of the present study.The domain arrangement of canonical phytochromes consists of an N-terminal photosensory domain, including PAS, GAF, and PHY domains and a C-terminal regulatory kinase domain (see, e.g. Ref. 3). Bacterial phytochromes lack the N-terminal extension, and the PAS module insertion of plant phytochromes (3). In most of the bacterial phytochromes, the C-terminal regulatory domain is a histidine kinase (4). These kinases form homodimers as functional units (12) where the subunits transphosphorylate each other (13). The cofactors are linear tetrapyrroles that are covalently attached via a thioether linkage (14) to the side chains of specific conserved cysteine residues. The native chromophore of plant phytochromes is phytochromobilin (PΦB) (14), some cyanobacterial phytochromes incorporate phycocyanobilin (PCB) (15, 16), and all other bacterial phytochromes bind biliverdin (BV) (10, 11). Whereas the chromophore binding site of the more reduced bilins PΦB and PCB is located in the GAF domain, the binding site of BV is close to the N terminus upstream of the PAS domain (4, 11). The two distinct binding sites apparently require a specific substituent at the C3 carbon of pyrrole ring A, either an ethylidene (PΦB and PCB) or a vinyl (BV) group, for covalent attachment of the bilin chromophore (4). The holophytochrome assembly that includes covalent attachment of the chromophore is an autocatalytic process implying an intrinsic bilin C-S lyase activity of the apophytochrome (17). Kinetic studies of the autoassembly in vitro showed that ligation of the chromophore is the ultimate step following incorporation in the binding pocket and internal protonation (18).Phytochromes display photochromicity involving two either thermally stable or long-lived states, Pr and Pfr (red and far-red absorbing forms), that can be reversibly converted by light of appropriate wavelengths. The Pr to Pfr photoconversion is initiated by a rapid Z/E isomerization of the C-D methine bridge of the bilin chromophore (1922) leading within picoseconds to the formation of the Lumi-R intermediate (23, 24). The following thermal relaxations via Meta-RA and Meta-RC intermediates to Pfr proceed on the time scale of microseconds and milliseconds (2528).Assembly of Agp1 with locked BV derivatives showed that the geometry of the C-D methine bridge is 15Zanti in Pr and 15Eanti in Pfr (29) suggesting that this methine bridge remains in the anti conformation during photoconversion. The crystal structures of the chromophore binding domains of the bacteriophytochromes from Deinococcus radiodurans and Rhodopseudomonas palustris revealed that the BV chromophore adopts a 5Zsyn,10Zsyn,15Zanti configuration/conformation in the Pr state (3032). The 5Zsyn geometry of the A-B methine bridge in the Pr state was confirmed by assembly of Agp1 with the corresponding locked BV chromophore (33). Recently, heteronuclear NMR investigations and crystallographic studies on the complete photosensory domain of the cyanobacterial phytochrome Cph1 from Synechocystis showed that the PCB chromophore is also in the 5Zsyn,10Zsyn,15Zanti geometry in Pr (34, 35).Because the locked 5Zsyn adduct of Agp1 did not show a Pfr-like photo-product, conformational changes of the A-B methine bridge in the thermal relaxation cascade have been predicted (33). Flash photolysis experiments with this adduct suggested that these changes occur in the Meta-RA to Meta-RC transition (36). The stereochemistry of the A-B methine bridge in the Pfr state and in the preceding intermediates could not be determined unambiguously yet. Recent studies with doubly locked chromophores suggest that the C5–C6 single bond undergoes a thermal rotation from syn to anti in the photoconversion of Agp1, whereas an additional Z/E isomerization around the C4C5 double bond (hula-twist mechanism) was postulated for Agp2 (37). However, the crystal structure of the photosensory domain of the bacteriophytochrome PaBphP in its Pfr-enriched dark-adapted state favors the 5Zsyn conformation of the BV chromophore (38). Structural changes of the A-B methine bridge were excluded for the PCB chromophore of Cph1 on the basis of heteronuclear NMR (34), whereas low temperature Fourier transform IR studies on plant phytochrome suggested an environmental change of the ring A carbonyl group and/or a twist of the A-B methine bridge (39).The mechanism by which the signal is transmitted from the bilin chromophore to the protein is still obscure. The recent three-dimensional structures of the complete photosensory domains of Cph1 (35) and PaBphP (38) reveal key interactions between GAF and PHY domains in the corresponding dark states reflecting Pr and Pfr, respectively. In view of the intrinsic differences between the two phytochromes, it is not trivial to differentiate which of the numerous structural differences arise from light-induced conformational changes and are thus potentially important for signal transmission. We note that many approaches to provide a clue on the mechanism of signal transmission from the bilin chromophore to its proximate environment imply that this process is exclusively coupled to the photo-isomerization localized at ring D and its environment and that the chromophore then remains a passive element in the thermal relaxation cascade. This point of view is supported by recent results from femtosecond stimulated Raman spectroscopy suggesting that the chromophore structures in Lumi-R and Pfr are very similar (24). On the other hand, size exclusion chromatography experiments demonstrated that the global conformational changes observed for the Pfr state of Agp1 WT are absent in constructs (locked 5Zs adduct and mutants D197A and H250A), where the formation of Pfr is inhibited but the primary photoreaction proceeds (33, 40). These results are difficult to explain in terms of an ultra-fast signal transmission from the chromophore to the surrounding residues in its pocket.Light-induced conformational changes at the surface of plant phytochrome were observed by using covalently attached labels that are sensitive to the polarity of the microenvironment (41, 42). Due to the accessibility of several binding sites (i.e. the sulfhydryl groups of cysteines) in these experiments, the labeling was unspecific preventing further assignment of the observed changes to particular regions of the protein. Time-resolved absorption measurements with a covalently attached fluorescein derivative showed that the changes occur in the Meta-RC to Pfr transition (41). In the present work with Agp1 phytochrome, we take advantage of the highly reactive sulfhydryl group of Cys-20, the genuine binding site of the BV chromophore, to specifically attach a fluorescein derivative. We observed that this construct assembles with PCB and BV forming noncovalent photochromic adducts, spectrally and kinetically undisturbed by the fluorescein label. Upon photo-conversion, the absorption band of the label displays a bathochromic shift and increase in ellipticity suggesting that the label moves in a more hydrophobic and asymmetric environment in the Pfr state. The label thus serves as a polarity probe at the entrance of the binding pocket. We postulate that these polarity changes reflect conformational changes of the A-B methine of the bilin chromophore and/or the microenvironment of ring A at the entrance of the binding pocket. Time-resolved measurements reveal that the changes occur in the Meta-RA to Meta-RC and Meta-RC to Pfr transitions. Analogous results were obtained with the V249C mutant of Agp1 in which both the fluorescein probe and the PCB chromophore are covalently attached.  相似文献   
90.
Trafficking of proteins between the cytoplasm and nucleus occurs exclusively across the nuclear pore complex of eucaryotic cells. Fundamental aspects of this process affect temporal and spatial parameters, the latter carried out by specific import [nuclear localization sequence (NLS)] and export [nuclear export sequence (NES)] sequences. In this study, we focused on the adaptation of a protein heterodimerization assay to kinetically measure Crm1-mediated nuclear export in living cells using the rapalog AP21967, a heterodimerizing agent and NLS- and NES-containing fusion proteins equipped with distinct AP21967-specific binding motifs. In HeLa cells, we observed rapid nuclear export of the NLS-containing fusion protein in the presence of AP21967, with the extent of this process being a function of the number of AP21967-binding motifs. AP21967-induced nuclear export was specifically inhibited by the Crm1-binding molecule leptomycin B. Half maximal export was achieved after ∼ 10 min. We further applied protein heterodimerization in HeLa cells to study induced NLS-mediated nuclear import. Only in the presence of heterodimerizer AP21967 nuclear import of a cytoplasmically localizing fusion protein was observed. Induced protein heterodimerization is thus a valuable tool to quantitatively study nucleocytoplasmic protein trafficking in cultured cells, in a non-invasive, time-saving manner.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号