首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   465篇
  免费   48篇
  2023年   1篇
  2022年   3篇
  2021年   6篇
  2020年   4篇
  2019年   6篇
  2018年   9篇
  2017年   10篇
  2016年   12篇
  2015年   27篇
  2014年   24篇
  2013年   32篇
  2012年   29篇
  2011年   30篇
  2010年   23篇
  2009年   22篇
  2008年   21篇
  2007年   24篇
  2006年   41篇
  2005年   35篇
  2004年   32篇
  2003年   23篇
  2002年   27篇
  2001年   12篇
  2000年   6篇
  1999年   6篇
  1998年   11篇
  1997年   5篇
  1994年   4篇
  1993年   4篇
  1992年   5篇
  1991年   2篇
  1990年   3篇
  1987年   4篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1978年   1篇
  1976年   1篇
排序方式: 共有513条查询结果,搜索用时 31 毫秒
351.
352.
Protein modification is one of the important processes during oxidative stress. This modification of proteins is either due to direct oxidation of proteins by various oxidants or due to secondary modification by lipid peroxidation products, e.g. 4-hydroxynonenal. In the here presented work we compare the intracellular distribution of protein modification products after treatment of human U87 astrocytoma cells with hydrogen peroxide or HNE. The treatment with hydrogen peroxide leads mainly to a cytosolic formation of oxidized proteins whereas HNE treatment is forming HNE-adducts throughout the cell. Therefore, we concluded that HNE diffusion distance in cells enables this lipid peroxidation product to act as a second messenger within the cell and on the other hand is the reason for the genotoxic properties of this compound.  相似文献   
353.
Degradation of oxidized extracellular proteins by microglia   总被引:11,自引:0,他引:11  
In living organisms a permanent oxidation of protein oxidation occurs. The degradation of intracellular oxidized proteins is intensively studied, but knowledge about the fate of oxidatively modified extracellular proteins is still limited. We studied the fate of exogenously added oxidized proteins in microglial cells. Both primary microglial cells and RAW cells are able to remove added oxidized laminin and myelin basic protein from the extracellular environment. Moderately oxidized proteins are degraded most efficiently, whereas strongly oxidized proteins are taken up by the microglial cells without an efficient degradation. Activation of microglial cells enhances the selective recognition and degradation of moderately oxidized protein substrates by proteases. Inhibitor studies also revealed an involvement of the lysosomal and the proteasomal system in the degradation of extracellular proteins. These studies let us conclude that microglial cells are able to remove oxidized proteins from the extracellular environment in the brain.  相似文献   
354.
Generalized increases in protein oxidation and protein degradation in response to mild oxidative stress have been widely reported, but only a few individual proteins have actually been shown to undergo selective, oxidation-induced proteolysis. Our goal was to find such proteins in Clone 9 liver cells exposed to hydrogen peroxide. Using metabolic radiolabeling of intracellular proteins with [35S]cysteine/methionine, and analysis by two-dimensional polyacrylamide gel electrophoresis (2-D PAGE), we found at least three labeled proteins ("A," "B," and "C") whose levels were decreased significantly more than the generalized protein loss after mild oxidative stress. "Protein C" was excised from 2-D PAGE and subjected to N-terminal amino acid microsequencing. "Protein C" was identified as Protein Disulfide Isomerase or PDI (E.C. 5.3.4.1), and this identity was reconfirmed by Western blotting with a C-terminal anti-PDI monoclonal antibody. A combination of quantitative radiometry and Western blotting in 2-D PAGE revealed that PDI was selectively degraded and then new PDI was synthesized, following H2O2 exposure. PDI degradation was blocked by inhibitors of the proteasome, and by cell treatment with proteasome C2 subunit antisense oligonucleotides, indicating that the proteasome was largely responsible for oxidation-induced PDI degradation.  相似文献   
355.
Virus-like particles (VLPs) are known to induce strong Ab responses in the absence of adjuvants. In addition, VLPs are able to prime CTL responses in vivo. To study the efficiency of this latter process, we fused peptide p33 derived from lymphocytic choriomeningitis virus to the hepatitis B core Ag, which spontaneously assembles into VLPs (p33-VLPs). These p33-VLPs were efficiently processed in vitro and in vivo for MHC class I presentation. Nevertheless, p33-VLPs induced weak CTL responses that failed to mediate effective protection from viral challenge. However, if APCs were activated concomitantly in vivo using either anti-CD40 Abs or CpG oligonucleotides, the CTL responses induced were fully protective against infection with lymphocytic choriomeningitis virus or recombinant vaccinia virus. Moreover, these CTL responses were comparable to responses generally induced by live vaccines, because they could be measured in primary ex vivo (51)Cr release assays. Thus, while VLPs alone are inefficient at inducing CTL responses, they become very powerful vaccines if applied together with substances that activate APCs.  相似文献   
356.
The lining of the maltodextrin-specific maltoporin (LamB) channel exhibits a string of aromatic residues, the greasy slide, part of which has been shown previously by crystallography to be involved in substrate binding. To probe the functional role of the greasy slide, alanine scanning mutagenesis has been performed on the six greasy slide residues and Y118 at the channel constriction. The mutants were characterized by an in vivo uptake assay and sugar-induced-current-noise analysis. Crystallographic analysis of the W74A mutant showed no perturbation of the structure. All mutants showed considerably decreased maltose uptake rates in vivo (<10% of the wild-type value), indicating the functional importance of the investigated residues. Substitutions at the channel center revealed appreciably increased (up to 100-fold) in vitro half-saturation concentrations for maltotriose and maltohexaose binding to the channel. Sugar association rates, however, were significantly affected also by the mutations at either end of the slide (W74A, W358A, and F227A), an effect which became most apparent upon nonsymmetrical sugar addition. The kinetic data are discussed on the basis of an asymmetric one-site two-barrier model, which suggests that, at low substrate concentrations, as are found under physiological conditions, only the heights of the extracellular and periplasmic barriers, which are reduced by the presence of the greasy slide, determine the efficiency of this facilitated diffusion channel.  相似文献   
357.
The Srb8, -9, -10, and -11 proteins of yeast have been isolated as a discrete, stoichiometric complex. The isolated complex phosphorylates the C-terminal domain (CTD) of the largest subunit of RNA polymerase II at serines 2 and 5. In addition to the previously reported human homologs of Srb10 and 11, we have identified TRAP230/ARC240 and TRAP240/ARC250 as the human homologs of Srb8 and Srb9, showing the entire Srb8/9/10/11 complex is conserved from yeast to humans.  相似文献   
358.
Phosphatidylserine (PtdSer) is exposed on the external leaflet of the plasma membrane during apoptosis. The protein annexin A5 (anxA5) shows high affinity for PtdSer. When anxA5 binds to the PtdSer-expressing membranes during apoptosis, it crystallizes as an extended two-dimensional network and activates thereby a novel portal of cell entry that results in the internalization of the PtdSer-expressing membrane patches. This novel pathway of cell entry is potentially involved in the regulation of the surface expression of membrane receptors. In this study we report the regulation of surface expression of the initiator of blood coagulation tissue factor (TF) by this novel pathway of cell entry. AnxA5 induces the internalization of tissue factor expressed on the surface of apoptotic THP-1 macrophages. This down-regulation depends on the abilities of anxA5 to bind to PtdSer and to form a two-dimensional crystal at the membrane. We furthermore show that THP-1 cells produce and externalize anxA5 that cause the internalization of TF in an autocrine type of mechanism. We extended our in vitro work to the in vivo situation and show in a mouse model that anxA5 causes the down-regulation of TF expression by smooth muscle cells of the media of the carotid artery that was mechanically injured. In conclusion, anxA5 down-regulates surface-expressed TF by activating the novel portal of cell entry. This mechanism may be part of a more general autocrine function of anxA5 to regulate the plasma membrane receptor repertoir under stress conditions associated with the surface expression of PtdSer.  相似文献   
359.
Ornithine aminotransferase and 4-aminobutyrate aminotransferase are related pyridoxal phosphate-dependent enzymes having different substrate specificities. The atomic structures of these enzymes have shown (i) that active site differences are limited to the steric positions occupied by two tyrosine residues in ornithine aminotransferase and (ii) that, uniquely among related, structurally characterized aminotransferases, the conserved arginine that binds the alpha-carboxylate of alpha-amino acids interacts tightly with a glutamate residue. To determine the contribution of these residues to the specificities of the enzymes, we analyzed site-directed mutants of ornithine aminotransferase by rapid reaction kinetics, x-ray crystallography, and 13C NMR spectroscopy. Mutation of one tyrosine (Tyr-85) to isoleucine, as found in aminobutyrate aminotransferase, decreased the rate of the reaction of the enzyme with ornithine 1000-fold and increased that with 4-aminobutyrate 16-fold, indicating that Tyr-85 is a major determinant of specificity toward ornithine. Unexpectedly, the limiting rate of the second half of the reaction, conversion of ketoglutarate to glutamate, was greatly increased, although the kinetics of the reverse reaction were unaffected. A mutant in which the glutamate (Glu-235) that interacts with the conserved arginine was replaced by alanine retained its regiospecificity for the delta-amino group of ornithine, but the glutamate reaction was enhanced 650-fold, whereas only a 5-fold enhancement of the ketoglutarate reaction rate resulted. A model is proposed in which conversion of the enzyme to its pyridoxamine phosphate form disrupts the internal glutamate-arginine interaction, thus enabling ketoglutarate but not glutamate to be a good substrate.  相似文献   
360.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号