首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   465篇
  免费   48篇
  2023年   1篇
  2022年   3篇
  2021年   6篇
  2020年   4篇
  2019年   6篇
  2018年   9篇
  2017年   10篇
  2016年   12篇
  2015年   27篇
  2014年   24篇
  2013年   32篇
  2012年   29篇
  2011年   30篇
  2010年   23篇
  2009年   22篇
  2008年   21篇
  2007年   24篇
  2006年   41篇
  2005年   35篇
  2004年   32篇
  2003年   23篇
  2002年   27篇
  2001年   12篇
  2000年   6篇
  1999年   6篇
  1998年   11篇
  1997年   5篇
  1994年   4篇
  1993年   4篇
  1992年   5篇
  1991年   2篇
  1990年   3篇
  1987年   4篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1978年   1篇
  1976年   1篇
排序方式: 共有513条查询结果,搜索用时 31 毫秒
251.
The endocannabinoid system is a crucial regulator of hepatic fibrogenesis. We have previously shown that the endocannabinoid anandamide (AEA) is a lipid mediator that blocks proliferation and induces death in hepatic stellate cells (HSCs), the main fibrogenic cell type in the liver, but not in hepatocytes. However, the effects of other endocannabinoids such as N-arachidonoyl dopamine (NADA) have not yet been investigated. The NADA-synthesizing enzyme tyrosine hydroxylase was mainly expressed in sympathetic neurons in portal tracts. Its expression pattern stayed unchanged in normal or fibrotic liver. NADA dose dependently induced cell death in culture-activated primary murine or human HSCs after 2-4 h, starting from 5 μM. Despite caspase 3 cleavage, NADA-mediated cell death showed typical features of necrosis, including ATP depletion. Although the cannabinoid receptors CB1, CB2, or transient receptor potential cation channel subfamily V, member 1 were expressed in HSCs, their pharmacological or genetic blockade failed to inhibit NADA-mediated death, indicating a cannabinoid-receptor-independent mechanism. Interestingly, membrane cholesterol depletion with methyl-β-cyclodextrin inhibited AEA- but not NADA-induced death. NADA significantly induced reactive oxygen species formation in HSCs. The antioxidant glutathione (GSH) significantly decreased NADA-induced cell death. Similar to AEA, primary hepatocytes were highly resistant against NADA-induced death. Resistance to NADA in hepatocytes was due to high levels of GSH, since GSH depletion significantly increased NADA-induced death. Moreover, high expression of the AEA-degrading enzyme fatty acid amide hydrolase (FAAH) in hepatocytes also conferred resistance towards NADA-induced death, since pharmacological or genetic FAAH inhibition significantly augmented hepatocyte death. Thus the selective induction of cell death in HSCs proposes NADA as a novel antifibrogenic mediator.  相似文献   
252.
253.
Kernel smoothing is a popular approach to estimating relative risk surfaces from data on the locations of cases and controls in geographical epidemiology. The interpretation of such surfaces is facilitated by plotting of tolerance contours which highlight areas where the risk is sufficiently high to reject the null hypothesis of unit relative risk. Previously it has been recommended that these tolerance intervals be calculated using Monte Carlo randomization tests. We examine a computationally cheap alternative whereby the tolerance intervals are derived from asymptotic theory. We also examine the performance of global tests of hetereogeneous risk employing statistics based on kernel risk surfaces, paying particular attention to the choice of smoothing parameters on test power (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
254.
To test the hypothesis that factor Xa (fXa) interacts with protein S, fXa was labeled active-site specifically with a dansyl (D) dye via a Glu-Gly-Arg (EGR) tether to yield DEGR-fXa(i). When protein S was added to phosphatidylcholine/phosphatidylserine (PC/PS, 4:1) vesicle-bound DEGR-fXa(i), the anisotropy of the dansyl moiety was altered from 0.219 +/- 0.002 to 0.245 +/- 0.003. This change in dansyl anisotropy was not observed when DEGR-Xa(i) was titrated with protein S in the absence of PC/PS vesicles, or in the presence of 100% PC vesicles, or when PC/PS vesicle-bound DEGR-fXa(i) was titrated with thrombin-cleaved protein S. The protein S-dependent dansyl fluorescence change was specific for fXa because it was not observed for two homologous and similarly labeled DEGR-fIXa(i) and DEGR-fVIIa(i). Furthermore, protein S specifically and saturably altered the fluorescence anisotropy of PC/PS-bound active site-labeled LWB-FPR-fXa(i) (Kd = 33 nm) and was photocross-linked to PC/PS-bound LWB-FPR-fXa(i) analog, independently confirming the above results. Chemically synthesized microprotein S, comprising residues 1-116 of protein S and including the gamma-carboxyglutamic-rich domain, the thrombin-sensitive region (TSR), and the first epidermal growth factor-like domain (EGF1) of protein S, altered the anisotropy of PC/PS-bound DEGR-fXa(i) from 0.219 to 0.242, similar to the effect of the protein S titration (Kd = 303 nm), suggesting that microprotein S binds to DEGR-fXa(i). To identify individual protein S domain(s) that binds DEGR-fXa(i), the EGF1 and TSR domains were chemically synthesized and studied. The TSR altered the anisotropy of DEGR-fXa(i) by approximately 16% (Kd = 3.9 microm), but the EGF1 domain had no effect on the signal. In controls, the TSR domain did not alter the anisotropy of DEGR-fIXa(i) and DEGR-fVIIa(i), respectively. These data demonstrate that membrane-bound fXa binding to protein S involves the TSR of protein S.  相似文献   
255.
Mechanosensitivity in living biological tissue is a study area of increasing importance, but investigative tools are often inadequate. We have developed a noncontact nanoscale method to apply quantified positive and negative force at defined positions to the soft responsive surface of living cells. The method uses applied hydrostatic pressure (0.1-150 kPa) through a pipette, while the pipette-sample separation is kept constant above the cell surface using ion conductance based distance feedback. This prevents any surface contact, or contamination of the pipette, allowing repeated measurements. We show that we can probe the local mechanical properties of living cells using increasing pressure, and hence measure the nanomechanical properties of the cell membrane and the underlying cytoskeleton in a variety of cells (erythrocytes, epithelium, cardiomyocytes and neurons). Because the cell surface can first be imaged without pressure, it is possible to relate the mechanical properties to the local cell topography. This method is well suited to probe the nanomechanical properties and mechanosensitivity of living cells.  相似文献   
256.
Synchrotron-radiation-based computer microtomography (SRμCT) was applied to three biomineralised objects First, embryonic snails of the freshwater snail Biomphalaria glabrata, second, rhopalia (complex sense organs) of the medusa Aurelia aurita, and third, human teeth. The high absorption contrast between the soft tissue and mineralised tissues, i.e. the shell in the first case (consisting of calcium carbonate) and the statoliths in the second case (consisting of calcium sulphate hemihydrate), makes this method ideal for the study of biomineralised tissues. The objects can be non-destructively studied on a micrometre scale, and quantitative parameters like the thickness of a forming a snail shell or statolith crystal sizes can be obtained on a length scale of 1–2 μm. Using SRμCT, the dentin–enamel border can be clearly identified in X-ray dense teeth.  相似文献   
257.
The “Phot” protein family comprises blue-light photoreceptors that consist of two flavin mononucleotide (FMN)-binding LOV (light, oxygen, and voltage) domains and a serine/threonine kinase domain. We have investigated the LOV1 domain of Phot1 from Chlamydomonas reinhardtii by time-resolved absorption spectroscopy. Photoexcitation of the dark form, LOV1-447, causes transient bleaching and formation of two spectrally similar red-shifted intermediates that are both assigned to triplet states of the FMN. The triplet states decay with time constants of 800 ns and 4 μs with an efficiency of >90% into a blue-shifted intermediate, LOV1-390, that is attributed to a thiol adduct of cysteine 57 to FMN C(4a). LOV1-390 reverts to the dark form in hundreds of seconds, the time constant being dependent on pH and salt concentration. In the mutant C57S, where the thiol adduct cannot be formed, the triplet state displays an oxygen-dependent decay directly to the dark form. We present here a spectroscopic characterization of an algal sensory photoreceptor in general and of a LOV1 domain photocycle in particular. The results are discussed with respect to the behavior of the homologous LOV2 domain from oat.  相似文献   
258.
It is well established that interferon-alpha can induce non-cytotoxic intracellular suppression of hepatitis B virus replication, but the mechanisms involved are unclear. Cell culture studies to characterize these mechanisms are restricted, in part because hepatitis B virus replicates almost exclusively in liver-derived cells. To overcome this limitation we used a cytomegalovirus promoter-controlled hepatitis B virus expression system, which leads to intracellular viral replication even in non-hepatic cell lines. In this experimental system interferon-alpha treatment specifically suppressed viral replication demonstrating that antiviral activities against hepatitis B virus are not restricted to hepatic cells. Furthermore, the interferon-inducible MxA protein was recently reported to play a key role in the antiviral action of interferon-alpha against hepatitis B virus. Our data demonstrate that interferon-alpha also suppresses hepatitis B virus replication in MxA-deficient HEp2 cells, indicating that MxA is not essential for these activities. Taken together, our data imply that the experimental approach presented can also be adapted to established cell lines which are deficient in parts of the signal transduction pathway or other elements located further downstream, providing important insights into mechanisms specifically suppressing hepatitis B virus.  相似文献   
259.
Cellular reactions to oxidative stress always include a response in the protein turnover. Therefore, cellular handling of proteins is important to observe. In this method review, radioactive labeling of proteins in vitro and in intact cells is described. The use of techniques based on the radioactive quantification of amino acids is much more selective and reliable than other nonradioactive methods for studying the protein turnover of both long- and short-lived proteins. Variations of such measurements allow one to measure protein synthesis, protein degradation, formation of insoluble proteins, and, perhaps, the turnover of individual proteins.  相似文献   
260.
Natural resources are vulnerable to over-exploitation in the absence of effective management. However, norms, enforced by social ostracism, can promote cooperation and increase stock biomass in common-pool resource systems. Unfortunately, the long-term sustainable use of a resource is not assured even if cooperation, maintained by ostracism and aimed at optimizing resource use, exists. Here, using the example of fisheries, we show that for a cooperative to be maintained by ostracism over time, it often must act inefficiently, choosing a ‘second-best’ strategy where the resource is over-harvested to some degree. Those cooperatives that aim for maximum sustainable profit, the “first-best” harvest strategy, are more vulnerable to invasion by independent harvesters, leading to larger declines in the fish population. In contrast, second-best strategies emphasize the resistance to invasion by independent harvesters over maximizing yield or profit. Ultimately, this leads to greater long-run payoffs to the resource users as well as higher resource stock levels. This highlights the value of pragmatism in the design of cooperative institutions for managing natural resources.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号