首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   463篇
  免费   48篇
  2023年   1篇
  2022年   1篇
  2021年   6篇
  2020年   4篇
  2019年   6篇
  2018年   9篇
  2017年   10篇
  2016年   12篇
  2015年   27篇
  2014年   24篇
  2013年   32篇
  2012年   29篇
  2011年   30篇
  2010年   23篇
  2009年   22篇
  2008年   21篇
  2007年   24篇
  2006年   41篇
  2005年   35篇
  2004年   32篇
  2003年   23篇
  2002年   27篇
  2001年   12篇
  2000年   6篇
  1999年   6篇
  1998年   11篇
  1997年   5篇
  1994年   4篇
  1993年   4篇
  1992年   5篇
  1991年   2篇
  1990年   3篇
  1987年   4篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1978年   1篇
  1976年   1篇
排序方式: 共有511条查询结果,搜索用时 15 毫秒
121.
Recent studies have shown that stellate cells (SCs) of the medial entorhinal cortex become hyper-excitable in animal models of temporal lobe epilepsy. These studies have also demonstrated the existence of recurrent connections among SCs, reduced levels of recurrent inhibition in epileptic networks as compared to control ones, and comparable levels of recurrent excitation among SCs in both network types. In this work, we investigate the biophysical and dynamic mechanism of generation of the fast time scale corresponding to hyper-excitable firing and the transition between theta and fast firing frequency activity in SCs. We show that recurrently connected minimal networks of SCs exhibit abrupt, threshold-like transition between theta and hyper-excitable firing frequencies as the result of small changes in the maximal synaptic (AMPAergic) conductance. The threshold required for this transition is modulated by synaptic inhibition. Similar abrupt transition between firing frequency regimes can be observed in single, self-coupled SCs, which represent a network of recurrently coupled neurons synchronized in phase, but not in synaptically isolated SCs as the result of changes in the levels of the tonic drive. Using dynamical systems tools (phase-space analysis), we explain the dynamic mechanism underlying the genesis of the fast time scale and the abrupt transition between firing frequency regimes, their dependence on the intrinsic SC's currents and synaptic excitation. This abrupt transition is mechanistically different from others observed in similar networks with different cell types. Most notably, there is no bistability involved. 'In vitro' experiments using single SCs self-coupled with dynamic clamp show the abrupt transition between firing frequency regimes, and demonstrate that our theoretical predictions are not an artifact of the model. In addition, these experiments show that high-frequency firing is burst-like with a duration modulated by an M-current.  相似文献   
122.
Inspired by the successful work of converting Saccharomyces cerevisiae into an microorganism capable of synthesizing hydrocortisone, a 27-carbon molecule, from ethanol, a 2-carbon molecule, this review provides an overview of the potential of yeast as a recombinant organism in the 21st century. Yeast has been used by man for more than 6,000 years, and is still paving the way to new discoveries. It was the first eukaryotic organism to be sequenced, in 1996, and the first to produce hydrocortisone in 2003. In addition, extensive genome-wide analyses have been performed with yeast. In this review, we discuss the pros and cons of using yeast to produce small therapeutic molecules. It is obvious that S. cerevisiae has a cutting edge advantage of being a well-known organism and time will tell if yeast "biohydrocortisone" is a unique example or the beginning of a long list of yeast bioproducts. Other organisms, such as plants and bacteria, are competing with yeast. Bacteria produce a wealth of marketed molecules and plants are capable of producing extremely complex molecules with an unbeatable yield. However, S. cerevisiae offers a unique mix of the simplicity of a recombinant organism combined with the complexity of a eukaryote.  相似文献   
123.

Background  

Phytochromes are photoreceptors, discovered in plants, that control a wide variety of developmental processes. They have also been found in bacteria and fungi, but for many species their biological role remains obscure. This work concentrates on the phytochrome system of Agrobacterium tumefaciens, a non-photosynthetic soil bacterium with two phytochromes. To identify proteins that might share common functions with phytochromes, a co-distribution analysis was performed on the basis of protein sequences from 138 bacteria.  相似文献   
124.
Phytochromes are photochromic photoreceptors with a bilin chromophore that have been found in plants and bacteria. Typical bacterial phytochromes are composed of an N-terminal photosensory chromophore module and a C-terminal protein kinase. The former contains the chromophore, which allows phytochromes to adopt the two interconvertible spectral forms, Pr and Pfr. The N-terminal photosensory module of Agrobacterium phytochrome Agp1, Agp1-M15, was used for crystallization studies. The protein was either assembled with the natural chromophore biliverdin or a sterically locked synthetic biliverdin-derivative, termed 15Za. The last-named adduct does not undergo photoisomerization due to an additional carbon chain between the rings C and D of the chromophore. Both adducts could be crystallized, but the resolution was largely improved by the use of 15Za. Crystals of biliverdin-Agp1-M15 diffract to 6A resolution and belong to the tetragonal space group I422 with unit cell dimensions a = b = 171 Angstroms, c = 81 Angstroms, crystals of 15Za-Agp1-M15 belong to the same space group with similar unit cell dimensions a = b = 174 Angstroms, c = 80 Angstroms, but diffract to 3.4 Angstroms resolution. Assuming the asymmetric unit to be occupied by one monomer of 55kDa, the unit cell contains 54-55% solvent with a crystal volume per protein mass, V(m), of 2.7 Angstroms(3) Da(-1).  相似文献   
125.
The accumulation of oxidatively damaged proteins is a well-known hallmark of aging and several neurodegenerative diseases including Alzheimer's, Parkinson's and Huntigton's diseases. These highly oxidized protein aggregates are in general not degradable by the main intracellular proteolytic machinery, the proteasomal system. One possible strategy to reduce the accumulation of such oxidized protein aggregates is the prevention of the formation of oxidized protein derivatives or to reduce the protein oxidation to a degree that can be handled by the proteasome. To do so an antioxidative strategy might be successful. Therefore, we undertook the present study to test whether antioxidants are able to prevent the protein oxidation and to influence the proteasomal degradation of moderate oxidized proteins. As a model protein we choose ferritin. H2O2 induced a concentration dependent increase of protein oxidation accompanied by an increased proteolytic susceptibility. This increase of proteolytic susceptibility is limited to moderate hydrogen peroxide concentrations, whereas higher concentrations are accompanied by protein aggregate formation.

Protective effects of the vitamin E derivative Trolox, the pyridoindole derivative Stobadine and of the standardized extracts of flavonoids from bark of Pinus Pinaster Pycnogenol® and from leaves of Ginkgo biloba (EGb 761) were studied on moderate damaged ferritin.  相似文献   
126.
Phytochromes are widely distributed biliprotein photoreceptors. Typically, the chromophore becomes covalently linked to the protein during an autocatalytic lyase reaction. Plant and cyanobacterial phytochromes incorporate bilins with a ring A ethylidene side chain, whereas other bacterial phytochromes utilize biliverdin as chromophore, which has a vinyl ring A side chain. For Agrobacterium phytochrome Agp1, site-directed mutagenesis provided evidence that biliverdin is bound to cysteine 20. This cysteine is highly conserved within bacterial homologues, but its role as attachment site has as yet not been proven. We therefore performed mass spectrometry studies on proteolytic holopeptide fragments. For that purpose, an Agp1 expression vector was re-engineered to produce a protein with an N-terminal affinity tag. Following proteolysis, the chromophore co-purified with a ca. 5 kDa fragment during affinity chromatography, showing that the attachment site is located close to the N-terminus. Mass spectrometry analyses performed with the purified chromopeptide confirmed the role of the cysteine 20 as biliverdin attachment site. We also analyzed the role of the highly conserved histidine 250 by site-directed mutagenesis. The homologous amino acid plays an important but yet undefined role in plant phytochromes and has been proposed as chromophore attachment site of Deinococcus phytochrome. We found that in Agp1, this amino acid is dispensable for covalent attachment, but required for tight chromophore-protein interaction.  相似文献   
127.
Metabolic processes and environmental conditions cause the constant formation of oxidizing species over the lifetime of cells and organisms. This leads to a continuous oxidation of intracellular components, including lipids, DNA and proteins. During the extensively studied process of lipid peroxidation, several reactive low-molecular weight products are formed, including reactive aldehydes as 4-hydroxynonenal (HNE). These aldehydic lipid peroxidation products in turn are able to modify proteins. The degradation of oxidized and oxidatively modified proteins is an essential part of the oxidant defenses of cells. The major proteolytic system responsible for the removal of oxidized cytosolic and nuclear proteins is the proteasomal system. The proteasomal system by itself is a multicomponent system responsible for the degradation of the majority of intracellular proteins. It has been shown that some, mildly cross-linked, HNE-modified proteins are preferentially degraded by the proteasome, but extensive modification with this cross-linking aldehyde leads to the formation of protein aggregates, that can actually inhibit the proteasome. This review summarizes our knowledge of the interactions between lipid peroxidation products, proteins, and the proteasomal system.  相似文献   
128.
Otto H  Lamparter T  Borucki B  Hughes J  Heyn MP 《Biochemistry》2003,42(19):5885-5895
We investigated the dimerization of phytochrome Cph1 from the cyanobacterium Synechocystis by fluorescence resonance energy transfer (FRET). As donor we used the chromophore analogue phycoerythrobilin (PEB) and as acceptor either the natural chromophore phycocyanobilin (PCB; hetero transfer) or PEB (homo transfer). Both chromophores bind in a 1:1 stoichiometry to apo-monomers expressed in Escherichia coli. Energy transfer was characterized by time-resolved fluorescence intensity and anisotropy decay after excitation of PEB by picosecond pulses from a tunable Ti-sapphire laser system. ApoCph1 was first assembled with PEB at a low stoichiometry of 0.1. The remaining sites were then sequentially titrated with PCB. In the course of this titration, the mean lifetime of PEB decreased from 3.33 to 1.25 ns in the P(r) form of Cph1, whereas the anisotropy decay was unaffected. In the P(fr)/P(r) photoequilibrium (about 65% P(fr)), the mean lifetime decreased significantly less, to 1.67 ns. These observations provide strong support for inter-chromophore hetero energy transfer in mixed PEB/PCB dimers. The reduced energy transfer in P(fr) may be due to a structural difference but is at least in part due to the difference in spectral overlap, which was 4.1 x 10(-13) and 1.6 x 10(-13) cm(3) M(-1) in P(r) and P(fr), respectively. From the changes in the mean lifetime, rates of hetero energy transfer of 0.68 and 0.37 ns(-1) were calculated for the P(r) form and the P(fr)/P(r) photoequilibrium, respectively. Sequential titration of apo Cph1 with PEB alone to full occupancy did not affect the intensity decay but led to a substantial increase in depolarization. This is the experimental signature of homo energy transfer. Values for the rate of energy transfer k(HT) (0.47 ns(-1)) and the angle 2theta between the transition dipole moment directions (2theta = 45 +/- 5 degrees) were determined from an analysis of the concentration dependence of the anisotropy at five different PEB/Cph1 stoichiometries. The independently determined rates of hetero and homo energy transfer are thus of comparable magnitude and consistent with the energy transfer interpretation. Using these results and exploiting the 2-fold symmetry of the dimer, the chromophore-chromophore distance R(DA) was calculated and found to be in the range 49 A < R(DA) < 63 A. Further evidence for energy transfer in Cph1 dimers was obtained from dilution experiments with PEB/PEB dimers: the lifetime was unchanged, but the anisotropy increased as the dimers dissociated with increasing dilution. These experiments allowed a rough estimate of 5 +/- 3 microM for the dimer dissociation constant. With the deletion mutant Cph1Delta2 that lacks the carboxy terminal histidine kinase domain less energy transfer was observed suggesting that in this mutant dimerization is much weaker. The carboxy terminal domain of Cph1 that is involved in intersubunit trans-phosphorylation and signal transduction thus plays a dominant role in the dimerization. The FRET method provides a sensitive assay to monitor the association of Cph1 monomers.  相似文献   
129.
Total biosynthesis of hydrocortisone from a simple carbon source in yeast   总被引:3,自引:0,他引:3  
We report on the production of hydrocortisone, the major adrenal glucocorticoid of mammals and an important intermediate of steroidal drug synthesis, from a simple carbon source by recombinant Saccharomyces cerevisiae strains. An artificial and fully self-sufficient biosynthetic pathway involving 13 engineered genes was assembled and expressed in a single yeast strain. Endogenous sterol biosynthesis was rerouted to produce compatible sterols to serve as substrates for the heterologous part of the pathway. Biosynthesis involves eight mammalian proteins (mature forms of CYP11A1, adrenodoxin (ADX), and adrenodoxin reductase (ADR); mitochondrial forms of ADX and CYP11B1; 3beta-HSD, CYP17A1, and CYP21A1). Optimization involved modulating the two mitochondrial systems and disrupting of unwanted side reactions associated with ATF2, GCY1, and YPR1 gene products. Hydrocortisone was the major steroid produced. This work demonstrates the feasibility of transfering a complex biosynthetic pathway from higher eukaryotes into microorganisms.  相似文献   
130.
Endoglin is an auxiliary component of the transforming growth factor-beta (TGF-beta) receptor system, able to associate with the signaling receptor types I (TbetaRI) and II (TbetaRII) in the presence of ligand and to modulate the cellular responses to TGF-beta1. Endoglin cannot bind ligand on its own but requires the presence of the signaling receptors, supporting a critical role for the interaction between endoglin and TbetaRI or TbetaRII. This study shows that full-length endoglin interacts with both TbetaRI and TbetaRII, independently of their kinase activation state or the presence of exogenous TGF-beta1. Truncated constructs encoding either the extracellular or the cytoplasmic domains of endoglin demonstrated that the association with the signaling receptors occurs through both extracellular and cytoplasmic domains. However, a more specific mapping revealed that the endoglin/TbetaRI interaction was different from that of endoglin/TbetaRII. TbetaRII interacts with the amino acid region 437-558 of the extracellular domain of endoglin, whereas TbetaRI interacts not only with the region 437-558 but also with the protein region located between amino acid 437 and the N terminus. Both TbetaRI and TbetaRII interact with the cytoplasmic domain of endoglin, but TbetaRI only interacts when the kinase domain is inactive, whereas TbetaRII remains associated in its active and inactive forms. Upon association, TbetaRI and TbetaRII phosphorylate the endoglin cytoplasmic domain, and then TbetaRI, but not TbetaRII, kinase dissociates from the complex. Conversely, endoglin expression results in an altered phosphorylation state of TbetaRII, TbetaRI, and downstream Smad proteins as well as a modulation of TGF-beta signaling, as measured by the reporter gene expression. These results suggest that by interacting through its extracellular and cytoplasmic domains with the signaling receptors, endoglin might affect TGF-beta responses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号