首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   761篇
  免费   65篇
  2023年   7篇
  2022年   11篇
  2021年   25篇
  2020年   12篇
  2019年   19篇
  2018年   21篇
  2017年   19篇
  2016年   27篇
  2015年   36篇
  2014年   42篇
  2013年   46篇
  2012年   63篇
  2011年   40篇
  2010年   37篇
  2009年   15篇
  2008年   35篇
  2007年   27篇
  2006年   29篇
  2005年   30篇
  2004年   37篇
  2003年   30篇
  2002年   32篇
  2001年   23篇
  2000年   7篇
  1999年   9篇
  1998年   5篇
  1997年   7篇
  1996年   4篇
  1992年   5篇
  1989年   6篇
  1988年   8篇
  1987年   3篇
  1986年   5篇
  1985年   3篇
  1984年   6篇
  1981年   7篇
  1980年   4篇
  1979年   4篇
  1978年   3篇
  1977年   4篇
  1976年   3篇
  1975年   5篇
  1974年   8篇
  1973年   8篇
  1972年   5篇
  1971年   7篇
  1970年   4篇
  1968年   6篇
  1967年   6篇
  1966年   3篇
排序方式: 共有826条查询结果,搜索用时 31 毫秒
61.
How does the sensory environment shape circuit organization in higher brain centers? Here we have addressed the dependence on activity of a defined circuit within the mushroom body of adult Drosophila. This is a brain region receiving olfactory information and involved in long-term associative memory formation. The main mushroom body input region, named the calyx, undergoes volumetric changes correlated with alterations of experience. However, the underlying modifications at the cellular level remained unclear. Within the calyx, the clawed dendritic endings of mushroom body Kenyon cells form microglomeruli, distinct synaptic complexes with the presynaptic boutons of olfactory projection neurons. We developed tools for high-resolution imaging of pre- and postsynaptic compartments of defined calycal microglomeruli. Here we show that preventing firing of action potentials or synaptic transmission in a small, identified fraction of projection neurons causes alterations in the size, number, and active zone density of the microglomeruli formed by these neurons. These data provide clear evidence for activity-dependent organization of a circuit within the adult brain of the fly.  相似文献   
62.
The use of foetal liver cells (FLC) in the context of hepatic tissue engineering might permit efficient in vitro expansion and cryopreservation in a cell bank. A prerequisite for successful application of bioartificial liver tissue is sufficient initial vascularization. In this study, we evaluated the transplantation of fibrin gel-immobilized FLC in a vascularized arterio-veno-venous (AV)-loop model. FLC were isolated from embryonic/foetal (ED 16) rat livers and were enriched by using magnetic cell sorting (MACS). After cryopreservation, FLC were labelled by pkh-26. Cells were transplanted in a fibrin matrix into a subcutaneous chamber containing a microsurgically created AV-loop in the femoral region of the recipient rat. The chambers were explanted after 14 days. Subcutaneous implants without an AV-loop and cell-free implants served as controls. Fluorescence microscopy of the constructs was used to identify pkh-26+- donor cells. Characterization was performed by RT-PCR and immunhistology (IH) for CK-18 and CD31. Transplantation of FLC using the AV-loop permitted a neo -tissue formation in the fibrin matrix. A high-density vascularization was observed in the AV-loop constructs as shown by CD31 IH. Viable foetal donor cells were detected which expressed CK-18. FLC can be successfully used for heterotopic transplantation. Fibrin matrix permits rapid blood vessel ingrowth from the AV-loop and supports engraftment of FLC. It is therefore an appropriate environment for hepatocyte transplantation in combination with microsurgical vascularization strategies. Transplantation of fibrin gel-immobilized FLC may be a promising approach for the development of highly vascularized in vivo tissue-engineering-based liver support systems.  相似文献   
63.
64.
Liu B  Raeth T  Beuerle T  Beerhues L 《Planta》2007,225(6):1495-1503
Biphenyls and dibenzofurans are the phytoalexins of the Maloideae, a subfamily of the economically important Rosaceae. The carbon skeleton of the two classes of antimicrobial secondary metabolites is formed by biphenyl synthase (BIS). A cDNA encoding this key enzyme was cloned from yeast-extract-treated cell cultures of Sorbus aucuparia. BIS is a novel type III polyketide synthase (PKS) that shares about 60% amino acid sequence identity with other members of the enzyme superfamily. Its preferred starter substrate is benzoyl-CoA that undergoes iterative condensation with three molecules of malonyl-CoA to give 3,5-dihydroxybiphenyl via intramolecular aldol condensation. BIS did not accept CoA-linked cinnamic acids such as 4-coumaroyl-CoA. This substrate, however, was the preferential starter molecule for chalcone synthase (CHS) that was also cloned from S. aucuparia cell cultures. While BIS expression was rapidly, strongly and transiently induced by yeast extract treatment, CHS expression was not. In a phylogenetic tree, BIS grouped together closely with benzophenone synthase (BPS) that also uses benzoyl-CoA as starter molecule but cyclizes the common intermediate via intramolecular Claisen condensation. The molecular characterization of BIS thus contributes to the understanding of the functional diversity and evolution of type III PKSs.  相似文献   
65.
Mucosal epithelial cell layers are constantly exposed to a complex resident microflora. Deleted in malignant brain tumors 1 (DMBT1) belongs to the group of secreted scavenger receptor cysteine-rich proteins and is considered to be involved in host defense by pathogen binding. This report describes the regulation and function of DMBT1 in intestinal epithelial cells, which form the primary immunological barrier for invading pathogens. We report that intestinal epithelial cells up-regulate DMBT1 upon proinflammatory stimuli (e.g., TNF-alpha, LPS). We demonstrate that DMBT1 is a target gene for the intracellular pathogen receptor NOD2 via NF-kappaB activation. DMBT1 is strongly up-regulated in the inflamed intestinal mucosa of Crohn's disease patients with wild-type, but not with mutant NOD2. We show that DMBT1 inhibits cytoinvasion of Salmonella enterica and LPS- and muramyl dipeptide-induced NF-kappaB activation and cytokine secretion in vitro. Thus, DMBT1 may play an important role in the first line of mucosal defense conferring immune exclusion of bacterial cell wall components. Dysregulated intestinal DMBT1 expression due to mutations in the NOD2/CARD15 gene may be part of the complex pathophysiology of barrier dysfunction in Crohn's disease.  相似文献   
66.
Arctiids which as larvae sequester pyrrolizidine alkaloids (PAs) from their food plants are known to synthesize insect-specific PAs by esterifying necine bases derived from plant PAs with necic acids of insect origin. There are two classes of insect PAs, the creatonotines and the callimorphines. The creatonotines contain as necic acids either 2-hydroxy-3-methylbutyric acid (creatonotine A) or 2-hydroxy-3-methylpentanoic acid (creatonotine B). The three known callimorphines contain 2-hydroxy-2-methylbutanoic acid whose hydroxyl group can be either free (deacetylcallimorphine) or acetylated (callimorphine) or propionylated (homocallimorphine). Insect PAs are assumed to play an important role in the recycling of plant derived necine bases and the processing by trans-esterification of PA monoesters that cannot be directly transmitted to the insect's pupal and adult life-stages. The absolute configuration of the insect-specific necic acids was elucidated in the context of the suggested role of the insect PAs as insect-made mimics of plant monoester PAs of the lycopsamine type. For this purpose all needed stereoisomers were synthesized and a gas chromatography-mass spectrometry (GC-MS) method was established that allows the enantioselective separation and assignment of the stereochemistry of all insect specific necic acids as their methyl esters. The method could also be applied to the GC-MS analysis of the intact alkaloids which were hydrolyzed during injection and converted into their methyl esters. Analysis of the creatonotines and callimorphines isolated from the polyphagous arctiids Estigmene acrea and Grammia geneura that were fed with pure PAs and defined PA mixtures revealed the following absolute configuration: the callimorphines and creatonotine A were present in 2'R configuration, whereas creatonotine B was found as mixture of (2'R, 3'S)- and (2'S, 3'S)-stereoisomers. The ratio of 2'S to 2'R was extremely variable ranging from 98% S to 94% R. The cause of the lack of stereospecificity is discussed particularly in respect of a possible epimerization of the hydroxyl group at C-2' in analogy to the known epimerization at C-3' of plant acquired PAs of the lycopsamine type.  相似文献   
67.
68.
Autophagy is a key degradative pathway coordinated by external cues, including starvation, oxidative stress, or pathogen detection. Rare are the molecules known to contribute mechanistically to the regulation of autophagy and expressed specifically in particular environmental contexts or in distinct cell types. Here, we unravel the role of RUN and FYVE domain–containing protein 4 (RUFY4) as a positive molecular regulator of macroautophagy in primary dendritic cells (DCs). We show that exposure to interleukin-4 (IL-4) during DC differentiation enhances autophagy flux through mTORC1 regulation and RUFY4 induction, which in turn actively promote LC3 degradation, Syntaxin 17–positive autophagosome formation, and lysosome tethering. Enhanced autophagy boosts endogenous antigen presentation by MHC II and allows host control of Brucella abortus replication in IL-4–treated DCs and in RUFY4-expressing cells. RUFY4 is therefore the first molecule characterized to date that promotes autophagy and influences endosome dynamics in a subset of immune cells.  相似文献   
69.
70.
IntroductionDisease activity and therapy show an impact on cellular and serological parameters in patients with systemic lupus erythematosus (SLE). This study was performed to compare the influence of mycophenolate mofetil (MMF) and cyclophosphamide (CYC) therapy on these parameters in patients with flaring, organ-threatening disease.MethodsSLE patients currently receiving CYC (n = 20), MMF (n = 25) or no immunosuppressive drugs (n = 22) were compared using a cross-sectional design. Median disease activity and daily corticosteroid dose were similar in these treatment groups. Concurrent medication, organ manifestations, and disease activity were recorded, and cellular and serological parameters were determined by routine diagnostic tests or flow cytometric analysis. In addition follow-up data were obtained from different sets of patients (CYC n = 24; MMF n = 23).ResultsAlthough both drugs showed a significant effect on disease activity and circulating B cell subsets, only MMF reduced circulating plasmablasts and plasma cells as well as circulating free light chains within three months of induction therapy. Neither MMF nor CYC were able to reduce circulating memory B cells. MMF lowered IgA levels more markedly than CYC. We did not observe a significant difference in the reduction of IgG levels or anti-dsDNA antibodies comparing patients receiving MMF or CYC. In contrast to MMF, induction therapy with CYC was associated with a significant increase of circulating CD8+ effector T cells and plasmacytoid dendritic cells (PDCs) after three months.ConclusionsThe results indicate differences between MMF and CYC with regard to the mechanism of action. MMF, but not CYC, treatment leads to a fast and enduring reduction of surrogate markers of B cell activation, such as circulating plasmablasts, plasma cells and free light chains but a comparable rate of hypogammaglobulinemia.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-015-0603-8) contains supplementary material, which is available to authorized users.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号