首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1478篇
  免费   174篇
  2023年   10篇
  2022年   18篇
  2021年   33篇
  2020年   23篇
  2019年   32篇
  2018年   32篇
  2017年   30篇
  2016年   38篇
  2015年   53篇
  2014年   63篇
  2013年   81篇
  2012年   112篇
  2011年   78篇
  2010年   62篇
  2009年   45篇
  2008年   69篇
  2007年   46篇
  2006年   58篇
  2005年   48篇
  2004年   65篇
  2003年   60篇
  2002年   59篇
  2001年   47篇
  2000年   27篇
  1999年   29篇
  1998年   15篇
  1997年   14篇
  1996年   12篇
  1992年   20篇
  1991年   19篇
  1990年   17篇
  1989年   19篇
  1988年   16篇
  1987年   12篇
  1986年   14篇
  1985年   14篇
  1984年   9篇
  1983年   13篇
  1982年   10篇
  1981年   12篇
  1979年   13篇
  1977年   12篇
  1975年   13篇
  1974年   13篇
  1973年   16篇
  1972年   12篇
  1971年   10篇
  1969年   9篇
  1968年   12篇
  1967年   17篇
排序方式: 共有1652条查询结果,搜索用时 15 毫秒
121.
Phenolic compounds, named integracin D (1), (7′R, 8′S, 8S)-8-hydroxyisoguaiacin (3), (2R, 3R) pinobanksin-3-caffeoylate (5) and threo-8S-7-methoxysyringylglycerol (6), respectively, were isolated from the Chinese mangrove plant Laguncularia racemosa (L) Gaertn. f. (Combretaceae), together with 23 known phenolic metabolites. Their structures were elucidated on the basis of extensive spectroscopic analyses including that of IR, UV, MS, CD, 1D and 2D NMR spectra as well as by comparison with literature data. Compound 5 showed significant anti-oxidative activity in the DPPH and TEAC free-radical-scavenging assays, while several of the phenolic compounds were tested for protein kinase inhibitory activity in an assay involving 24 different human tumor related protein kinases. Compounds 5, 7, and 23 showed potential inhibition with IC50 values between 2.2 and 3.6 μg/mL toward individual kinases. The ellagic acid derivatives were tested for insecticidal activity.  相似文献   
122.
Self assembly is a prerequisite for fabricating nanoscale structures. Here we present a new fusion protein based on the stress-responsive homo-oligomeric protein, SP1. This ring-shaped protein is a highly stable homododecamer, which can be potentially utilized to self-assemble different modules and enzymes in a predicted and oriented manner. For that purpose, a cohesin module (a component of the bacterial cellulosome) was selected, its gene fused in-frame to SP1, and the fusion protein was expressed in Escherichia coli. The cohesin module, specialized to incorporate different enzymes through specific recognition of a dockerin modular counterpart, is used to display new moieties on the SP1 scaffold. The SP1 scaffold displayed 12 active cohesin modules and specific binding to a dockerin-fused cellulase enzyme from Thermobifida fusca. Moreover, we found a significant increase in specific activity of the scaffold-displayed enzymes.  相似文献   
123.
Mucosal epithelial cell layers are constantly exposed to a complex resident microflora. Deleted in malignant brain tumors 1 (DMBT1) belongs to the group of secreted scavenger receptor cysteine-rich proteins and is considered to be involved in host defense by pathogen binding. This report describes the regulation and function of DMBT1 in intestinal epithelial cells, which form the primary immunological barrier for invading pathogens. We report that intestinal epithelial cells up-regulate DMBT1 upon proinflammatory stimuli (e.g., TNF-alpha, LPS). We demonstrate that DMBT1 is a target gene for the intracellular pathogen receptor NOD2 via NF-kappaB activation. DMBT1 is strongly up-regulated in the inflamed intestinal mucosa of Crohn's disease patients with wild-type, but not with mutant NOD2. We show that DMBT1 inhibits cytoinvasion of Salmonella enterica and LPS- and muramyl dipeptide-induced NF-kappaB activation and cytokine secretion in vitro. Thus, DMBT1 may play an important role in the first line of mucosal defense conferring immune exclusion of bacterial cell wall components. Dysregulated intestinal DMBT1 expression due to mutations in the NOD2/CARD15 gene may be part of the complex pathophysiology of barrier dysfunction in Crohn's disease.  相似文献   
124.
Arctiids which as larvae sequester pyrrolizidine alkaloids (PAs) from their food plants are known to synthesize insect-specific PAs by esterifying necine bases derived from plant PAs with necic acids of insect origin. There are two classes of insect PAs, the creatonotines and the callimorphines. The creatonotines contain as necic acids either 2-hydroxy-3-methylbutyric acid (creatonotine A) or 2-hydroxy-3-methylpentanoic acid (creatonotine B). The three known callimorphines contain 2-hydroxy-2-methylbutanoic acid whose hydroxyl group can be either free (deacetylcallimorphine) or acetylated (callimorphine) or propionylated (homocallimorphine). Insect PAs are assumed to play an important role in the recycling of plant derived necine bases and the processing by trans-esterification of PA monoesters that cannot be directly transmitted to the insect's pupal and adult life-stages. The absolute configuration of the insect-specific necic acids was elucidated in the context of the suggested role of the insect PAs as insect-made mimics of plant monoester PAs of the lycopsamine type. For this purpose all needed stereoisomers were synthesized and a gas chromatography-mass spectrometry (GC-MS) method was established that allows the enantioselective separation and assignment of the stereochemistry of all insect specific necic acids as their methyl esters. The method could also be applied to the GC-MS analysis of the intact alkaloids which were hydrolyzed during injection and converted into their methyl esters. Analysis of the creatonotines and callimorphines isolated from the polyphagous arctiids Estigmene acrea and Grammia geneura that were fed with pure PAs and defined PA mixtures revealed the following absolute configuration: the callimorphines and creatonotine A were present in 2'R configuration, whereas creatonotine B was found as mixture of (2'R, 3'S)- and (2'S, 3'S)-stereoisomers. The ratio of 2'S to 2'R was extremely variable ranging from 98% S to 94% R. The cause of the lack of stereospecificity is discussed particularly in respect of a possible epimerization of the hydroxyl group at C-2' in analogy to the known epimerization at C-3' of plant acquired PAs of the lycopsamine type.  相似文献   
125.
Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII) is a major mediator of cellular Ca(2+) signaling. Several inhibitors are commonly used to study CaMKII function, but these inhibitors all lack specificity. CaM-KIIN is a natural, specific CaMKII inhibitor protein. CN21 (derived from CaM-KIIN amino acids 43-63) showed full specificity and potency of CaMKII inhibition. CNs completely blocked Ca(2+)-stimulated and autonomous substrate phosphorylation by CaMKII and autophosphorylation at T305. However, T286 autophosphorylation (the autophosphorylation generating autonomous activity) was only mildly affected. Two mechanisms can explain this unusual differential inhibitor effect. First, CNs inhibited activity by interacting with the CaMKII T-site (and thereby also interfered with NMDA-type glutamate receptor binding to the T-site). Because of this, the CaMKII region surrounding T286 competed with CNs for T-site interaction, whereas other substrates did not. Second, the intersubunit T286 autophosphorylation requires CaM binding both to the "kinase" and the "substrate" subunit. CNs dramatically decreased CaM dissociation, thus facilitating the ability of CaM to make T286 accessible for phosphorylation. Tat-fusion made CN21 cell penetrating, as demonstrated by a strong inhibition of filopodia motility in neurons and insulin secrection from isolated Langerhans' islets. These results reveal the inhibitory mechanism of CaM-KIIN and establish a powerful new tool for dissecting CaMKII function.  相似文献   
126.
The reaction of the rice mutant HEBIBA differs from that of wild-type rice in that the mutant responds inversely to red light and is defective in the light-triggered biosynthesis of jasmonic acid (JA). Using the wild type and the HEBIBA mutant of rice in a differential display screen, we attempted to identify genes that act in or near the convergence point of light and JA signalling. We isolated specifically regulated DNA fragments from approximately 10 000 displayed bands, and identified a new early light- and JA-induced gene. This gene encodes an enzyme containing a GDSL motif, showing 38 % identity at the amino acid level to lipase Arab-1 in Arabidopsis thaliana. The GDSL CONTAINING ENZYME RICE 1 gene (GER1) is rapidly induced by both red (R) and far-red (FR) light and by JA. The results are discussed with respect to a possible role for GER1 as a negative regulator of coleoptile elongation in the context of recent findings on the impact of JA on light signalling.  相似文献   
127.
128.
129.
Autophagy is a key degradative pathway coordinated by external cues, including starvation, oxidative stress, or pathogen detection. Rare are the molecules known to contribute mechanistically to the regulation of autophagy and expressed specifically in particular environmental contexts or in distinct cell types. Here, we unravel the role of RUN and FYVE domain–containing protein 4 (RUFY4) as a positive molecular regulator of macroautophagy in primary dendritic cells (DCs). We show that exposure to interleukin-4 (IL-4) during DC differentiation enhances autophagy flux through mTORC1 regulation and RUFY4 induction, which in turn actively promote LC3 degradation, Syntaxin 17–positive autophagosome formation, and lysosome tethering. Enhanced autophagy boosts endogenous antigen presentation by MHC II and allows host control of Brucella abortus replication in IL-4–treated DCs and in RUFY4-expressing cells. RUFY4 is therefore the first molecule characterized to date that promotes autophagy and influences endosome dynamics in a subset of immune cells.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号