首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   257篇
  免费   16篇
  2023年   1篇
  2021年   1篇
  2020年   2篇
  2019年   6篇
  2018年   3篇
  2017年   6篇
  2016年   6篇
  2015年   7篇
  2014年   9篇
  2013年   12篇
  2012年   26篇
  2011年   39篇
  2010年   57篇
  2009年   42篇
  2008年   7篇
  2007年   8篇
  2006年   9篇
  2005年   4篇
  2004年   6篇
  2003年   7篇
  2002年   3篇
  2001年   1篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1993年   2篇
  1974年   1篇
  1967年   2篇
排序方式: 共有273条查询结果,搜索用时 15 毫秒
21.
Thermomonospora curvata Henssen 1957 is the type species of the genus Thermomonospora. This genus is of interest because members of this clade are sources of new antibiotics, enzymes, and products with pharmacological activity. In addition, members of this genus participate in the active degradation of cellulose. This is the first complete genome sequence of a member of the family Thermomonosporaceae. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 5,639,016 bp long genome with its 4,985 protein-coding and 76 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.  相似文献   
22.
Rhodospirillum rubrum (Esmarch 1887) Molisch 1907 is the type species of the genus Rhodospirillum, which is the type genus of the family Rhodospirillaceae in the class Alphaproteobacteria. The species is of special interest because it is an anoxygenic phototroph that produces extracellular elemental sulfur (instead of oxygen) while harvesting light. It contains one of the most simple photosynthetic systems currently known, lacking light harvesting complex 2. Strain S1(T) can grow on carbon monoxide as sole energy source. With currently over 1,750 PubMed entries, R. rubrum is one of the most intensively studied microbial species, in particular for physiological and genetic studies. Next to R. centenum strain SW, the genome sequence of strain S1(T) is only the second genome of a member of the genus Rhodospirillum to be published, but the first type strain genome from the genus. The 4,352,825 bp long chromosome and 53,732 bp plasmid with a total of 3,850 protein-coding and 83 RNA genes were sequenced as part of the DOE Joint Genome Institute Program DOEM 2002.  相似文献   
23.
Oceanithermus profundus Miroshnichenko et al. 2003 is the type species of the genus Oceanithermus, which belongs to the family Thermaceae. The genus currently comprises two species whose members are thermophilic and are able to reduce sulfur compounds and nitrite. The organism is adapted to the salinity of sea water, is able to utilize a broad range of carbohydrates, some proteinaceous substrates, organic acids and alcohols. This is the first completed genome sequence of a member of the genus Oceanithermus and the fourth sequence from the family Thermaceae. The 2,439,291 bp long genome with its 2,391 protein-coding and 54 RNA genes consists of one chromosome and a 135,351 bp long plasmid, and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.  相似文献   
24.
Inconsistency of cropping is an important problem for UK sweet cherry production. Premature fruit abscission in Prunus can reduce yields severely, however, the environmental cues and hormonal signals that trigger abscission have not been identified. Auxin (IAA) is known to delay abscission by reducing the sensitivity of cells in the abscission zone to ethylene, a promoter of abscission. Therefore, the capacity for polar auxin transport (PAT) through sweet cherry pedicels was examined in relation to fruit abscission. Cherry ‘spurs’ (short shoots) with similar leaf areas and different fruit numbers were phloem-girdled to restrict assimilate movement. Abscission from spurs with many fruit (eight or more) occurred within 14 days of girdling, whereas abscission from spurs with few (two) fruit was minimal. The pedicels’ capacity for PAT in spurs with different fruit numbers was determined 1, 3 and 9 days after girdling (DAG). Fruit were analysed for endogenous IAA concentration 3, 5, 7 and 9 DAG. PAT inhibitors 2,3,5-triiodobenzoic acid or 1-N-naphthylphtalamic acid were applied to pedicels of fruit not expected to abscise, i.e. on spurs with few fruit. The effect of these inhibitors on fruit abscission was determined 14 DAG. The proportion of the transported [3H]-IAA was lower from the outset in pedicels from spurs with many fruit. By 9 DAG, symptoms of fruit abscission were apparent and 40% less [3H] -IAA was transported through pedicels on spurs with many fruit. Fruit endogenous IAA concentrations were similar in the two groups of spurs. Application of PAT inhibitors shortly after girdling increased fruit abscission by 30%. The results suggest that although a decline in PAT is not the only cause of fruit abscission, the maintenance of PAT contributes to fruit retention.  相似文献   
25.
Apic G  Ignjatovic T  Boyer S  Russell RB 《FEBS letters》2005,579(8):1872-1877
Systems biology promises to impact significantly on the drug discovery process. One of its ultimate goals is to provide an understanding of the complete set of molecular mechanisms describing an organism. Although this goal is a long way off, many useful insights can already come from currently available information and technology. One of the biggest challenges in drug discovery today is the high attrition rate: many promising candidates prove ineffective or toxic owing to a poor understanding of the molecular mechanisms of biological systems they target. A "systems" approach can help identify pathways related to a disease and can suggest secondary effects of drugs that might cause these problems and thus ultimately improve the drug discovery pipeline.  相似文献   
26.
Aim of this preliminary study was to examine and compare topographic distribution of Higuchi's fractal dimension (FD, measure of signal complexity) of EEG signals between states of relaxed wakefulness and drowsiness, as well as their FD differences. The experiments were performed on 10 healthy individuals using a fourteen-channel montage. An explanation is offered on the causes of the detected FD changes. FD values of 60 s records belonging to wake (Hori's stage 1) and drowsy (Hori's stages 2-4) states were calculated for each channel and each subject. In 136 out of 140 epochs an increase in FD was obtained. Relationship between signal FD and its relative alpha amplitude was mathematically modeled and we quantitatively demonstrated that the increase in FD was predominantly due to a reduction in alpha activity. The model was generalized to include other EEG oscillations. By averaging FD values for each channel across 10 subjects, four clusters (O2O1; T6P4T5P3; C3F3F4C4F8F7; T4T3) for the wake and two clusters (O2O1P3T6P4T5; C3C4F4F3F8T4T3F7) for the drowsy state were statistically verified. Topographic distribution of FD values in wakefulness showed a lateral symmetry and a partial fronto-occipital gradient. In drowsiness, a reduction in the number of clusters was detected, due to regrouping of channels T3, T4, O1 and O2. Topographic distribution of absolute FD differences revealed largest values at F7, O1 and F3. Reorganization of channel clusters showed that regionalized brain activity, specific for wakefulness, became more global by entering into drowsiness. Since the global increase in FD during wake-to-drowsy transition correlated with the decrease of alpha power, we inferred that increase of EEG complexity may not necessarily be an index of brain activation.  相似文献   
27.
Modern methods to develop microbe-based biomass conversion processes require a system-level understanding of the microbes involved. Clostridium species have long been recognized as ideal candidates for processes involving biomass conversion and production of various biofuels and other industrial products. To expand the knowledge base for clostridial species relevant to current biofuel production efforts, we have sequenced the genomes of 20 species spanning multiple genera. The majority of species sequenced fall within the class III cellulosome-encoding Clostridium and the class V saccharolytic Thermoanaerobacteraceae. Species were chosen based on representation in the experimental literature as model organisms, ability to degrade cellulosic biomass either by free enzymes or by cellulosomes, ability to rapidly ferment hexose and pentose sugars to ethanol, and ability to ferment synthesis gas to ethanol. The sequenced strains significantly increase the number of noncommensal/nonpathogenic clostridial species and provide a key foundation for future studies of biomass conversion, cellulosome composition, and clostridial systems biology.  相似文献   
28.
The present study compares the results of three different covalent immobilization methods employed for immobilization of lipase from Candida rugosa on Eupergit® C supports with respect to enzyme loadings, activities and coupling yields. It seems that method yielding the highest activity retention of 43.3% is based on coupling lipase via its carbohydrate moiety previously modified by periodate oxidation. Study of thermal deactivation kinetics at three temperatures (37, 50 and 75 °C) revealed that the immobilization method also produces an appreciable stabilization of the biocatalyst, changing its thermal deactivation profile. By comparison of the t1/2 values obtained at 75 °C, it can be concluded that the lipase immobilized via carbohydrate moiety was almost 2-fold more stable than conventionally immobilized one and 18-fold than free lipase. The immobilization procedure developed is quite simple, and easily reproduced, and provides a promising solution for application of lipase in aqueous and microaqueous reaction system.  相似文献   
29.
The interaction of endothelial cells with extracellular matrix proteins at focal adhesions sites contributes to the integrity of vascular endothelial barrier. Although focal adhesion kinase (FAK) activation is required for the recovery of the barrier function after increased endothelial junctional permeability, the basis for the recovery remains unclear. We tested the hypothesis that FAK activates p190RhoGAP and, thus, negatively regulates RhoA activity and promotes endothelial barrier restoration in response to the permeability-increasing mediator thrombin. We observed that thrombin caused a transient activation of RhoA but a more prolonged FAK activation temporally coupled to the recovery of barrier function. Thrombin also induced tyrosine phosphorylation of p190RhoGAP, which coincided with decrease in RhoA activity. We further showed that FAK was associated with p190RhoGAP, and importantly, recombinant FAK phosphorylated p190RhoGAP in vitro. Inhibition of FAK by adenoviral expression of FRNK (a dominant negative FAK construct) in monolayers prevented p190RhoGAP phosphorylation, increased RhoA activity, induced actin stress fiber formation, and produced an irreversible increase in endothelial permeability in response to thrombin. We also observed that p190RhoGAP was unable to attenuate RhoA activation in the absence of FAK activation induced by FRNK. The inhibition of RhoA by the C3 toxin (Clostridium botulinum toxin) restored endothelial barrier function in the FRNK-expressing cells. These findings in endothelial cells were recapitulated in the lung microcirculation in which FRNK expression in microvessel endothelia increased vascular permeability. Our studies demonstrate that FAK-induced down-modulation of RhoA activity via p190RhoGAP is a crucial step in signaling endothelial barrier restoration after increased endothelial permeability.  相似文献   
30.
Postnatal cardiac remodeling is characterized by a marked decrease in the insulin-like growth factor 1 (IGF1) and IGF1 receptor (IGF1R) expression. The underlying mechanism remains unexplored. This study examined the role of microRNAs in postnatal cardiac remodeling. By expression profiling, we observed a 10-fold increase in miR-378 expression in 1-week-old neonatal mouse hearts compared with 16-day-old fetal hearts. There was also a 4-6-fold induction in expression of miR-378 in older (10 months) compared with younger (1 month) hearts. Interestingly, tissue distribution analysis identified miR-378 to be highly abundant in heart and skeletal muscles. In the heart, specific expression was observed in cardiac myocytes, which was inducible by a variety of stressors. Overexpression of miR-378 enhanced apoptosis of cardiomyocytes by direct targeting of IGF1R and reduced signaling in Akt cascade. The inhibition of miR-378 by its anti-miR protected cardiomyocytes against H(2)O(2) and hypoxia reoxygenation-induced cell death by promoting IGF1R expression and downstream Akt signaling cascade. Additionally, our data show that miR-378 expression is inhibited by IGF1 in cardiomyocytes. In tissues such as fibroblasts and fetal hearts, where IGF1 levels are high, we found either absent or significantly low miR-378 levels, suggesting an inverse relationship between these two factors. Our study identifies miR-378 as a new cardioabundant microRNA that targets IGF1R. We also demonstrate the existence of a negative feedback loop between miR-378, IGF1R, and IGF1 that is associated with postnatal cardiac remodeling and with the regulation of cardiomyocyte survival during stress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号