首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   257篇
  免费   16篇
  2023年   1篇
  2021年   1篇
  2020年   2篇
  2019年   6篇
  2018年   3篇
  2017年   6篇
  2016年   6篇
  2015年   7篇
  2014年   9篇
  2013年   12篇
  2012年   26篇
  2011年   39篇
  2010年   57篇
  2009年   42篇
  2008年   7篇
  2007年   8篇
  2006年   9篇
  2005年   4篇
  2004年   6篇
  2003年   7篇
  2002年   3篇
  2001年   1篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1993年   2篇
  1974年   1篇
  1967年   2篇
排序方式: 共有273条查询结果,搜索用时 31 毫秒
101.
The biodegradation of hydrocarbon pollutants in open systems is limited by the availability of a utilizable nitrogen source. This limitation can be overcome by using uric acid. Enrichment cultures grown on crude oil-uric acid media yielded mixed and pure cultures that degraded petroleum. In a simulated open system, uric acid bound to crude oil and was available for bacterial growth and petroleum biodegradation.  相似文献   
102.
M2 protein of influenza A viruses is a tetrameric transmembrane proton channel, which has essential functions both early and late in the virus infectious cycle. Previous studies of proton transport by M2 have been limited to measurements outside the context of the virus particle. We have developed an in vitro fluorescence-based assay to monitor internal acidification of individual virions triggered to undergo membrane fusion. We show that rimantadine, an inhibitor of M2 proton conductance, blocks the acidification-dependent dissipation of fluorescence from a pH-sensitive virus-content probe. Fusion-pore formation usually follows internal acidification but does not require it. The rate of internal virion acidification increases with external proton concentration and saturates with a pK(m) of ~4.7. The rate of proton transport through a single, fully protonated M2 channel is approximately 100 to 400 protons per second. The saturating proton-concentration dependence and the low rate of internal virion acidification derived from authentic virions support a transporter model for the mechanism of proton transfer.  相似文献   
103.
104.
HIV infection is associated with high rates of osteopenia and osteoporosis, but the mechanisms involved are unclear. We recently reported that bone loss in the HIV transgenic rat model was associated with upregulation of B cell expression of the key osteoclastogenic cytokine receptor-activator of NF-κB ligand (RANKL), compounded by a simultaneous decline in expression of its physiological moderator, osteoprotegerin (OPG). To clinically translate these findings we performed cross-sectional immuno-skeletal profiling of HIV-uninfected and antiretroviral therapy-naïve HIV-infected individuals. Bone resorption and osteopenia were significantly higher in HIV-infected individuals. B cell expression of RANKL was significantly increased, while B cell expression of OPG was significantly diminished, conditions favoring osteoclastic bone resorption. The B cell RANKL/OPG ratio correlated significantly with total hip and femoral neck bone mineral density (BMD), T- and/or Z-scores in HIV infected subjects, but revealed no association at the lumbar spine. B cell subset analyses revealed significant HIV-related increases in RANKL-expressing naïve, resting memory and exhausted tissue-like memory B cells. By contrast, the net B cell OPG decrease in HIV-infected individuals resulted from a significant decline in resting memory B cells, a population containing a high frequency of OPG-expressing cells, concurrent with a significant increase in exhausted tissue-like memory B cells, a population with a lower frequency of OPG-expressing cells. These data validate our pre-clinical findings of an immuno-centric mechanism for accelerated HIV-induced bone loss, aligned with B cell dysfunction.  相似文献   
105.
The actions of UmuDC and RecA proteins, respectively in SOS mutagenesis are studied here with the following experimental strategy. We used lexAl (Ind) bacteria to maintain all SOS proteins at their basal concentrations and then selectively increased the concentration of either UmuDC or RecA protein. For this purpose, we isolated operator-constitutive mutations o c in the umuDC and umuD'C operons and also used the o 98 c -recA mutation. The o 1 c -umuDC mutation prevents LexA repressor from binding to the operator and improves the Pribnow box consensus sequence. As a result, 5000 UmuD and 500 UmuC molecules per cell were produced in lexAl bacteria. This concentration is sufficient to restore SOS mutagenesis. The level of RecA protein present in the repressed state promoted full UmuD cleavage. Overproduction of RecA alone did not promote SOS mutagenesis. Increasing the level of RecA in the presence of high concentrations of UmuDC proteins has no further effect on SOS mutgenesis. We conclude that, after DNA damage, umuDC is the only SOS operon that must be induced in Escherichia coli to promote SOS mutagenesis.  相似文献   
106.
The molecular profiles of protein expression from hundreds of cell lysates can be determined in a high-throughput manner by using fluorescent bead technologies, enzyme-linked immunosorbent assays (ELISAs), and protein microarrays. Although powerful, these tools are costly and technically challenging and thus have limited accessibility for many research groups. We propose a modification of traditional dot blotting that increases throughput of this approach and provides a simple and cost-effective technique for profiling multiple samples. In contrast to traditional blotting that uses a single membrane, we introduce blotting onto a stack of novel, thin, sieve-like membranes. These membranes have a high affinity for binding proteins, but have a lower capacity of protein binding compared to traditional (nitrocellulose) membranes. We compare the linear binding capacity and variability of these novel membranes with nitrocellulose membranes. Also, we describe the use of these membranes in a multilayer dot blot format for profiling mitogen-mediated signal transduction pathways in T cells.  相似文献   
107.
P-element transposition in Drosophila is regulated by tissue-specific alternative splicing of the P-element transposase pre-mRNA. In somatic cells, the P-element somatic inhibitor (PSI) protein binds to exon 3 of the pre-mRNA and recruits U1 small nuclear ribonucleoprotein (snRNP) to the F1 pseudo-splice site. This abrogates binding of U1 snRNP to the genuine 5' splice site, thereby preventing excision of the third intron. Two homologous short sequences, referred to as the A and B boxes, near the C terminus of PSI bind to U1-70k protein within U1 snRNP. We have now mapped the AB box-binding site of U1-70k to a short proline-rich sequence at the C terminus. Our NMR study shows that the B box forms an anti-parallel helical hairpin in which four highly conserved aromatic residues form a cluster on one face of the first helix. This hydrophobic cluster interacts extensively with the proline-rich region of the U1-70k protein.  相似文献   
108.
Opioid receptors are important pharmacological targets for the management of numerous medical conditions (eg, severe pain), but they are also the gateway to the development of deleterious side effects (eg, opiate addiction). Opioid receptor signaling cascades are well characterized. However, quantitative information regarding their lateral dynamics and nanoscale organization in the plasma membrane remains limited. Since these dynamic properties are important determinants of receptor function, it is crucial to define them. Herein, the nanoscale lateral dynamics and spatial organization of kappa opioid receptor (KOP), wild type mu opioid receptor (MOPwt), and its naturally occurring isoform (MOPN40D) were quantitatively characterized using fluorescence correlation spectroscopy and photoactivated localization microscopy. Obtained results, supported by ensemble‐averaged Monte Carlo simulations, indicate that these opioid receptors dynamically partition into different domains. In particular, significant exclusion from GM1 ganglioside‐enriched domains and partial association with cholesterol‐enriched domains was observed. Nanodomain size, receptor population density and the fraction of receptors residing outside of nanodomains were receptor‐specific. KOP‐containing domains were the largest and most densely populated, with the smallest fraction of molecules residing outside of nanodomains. The opposite was true for MOPN40D. Moreover, cholesterol depletion dynamically regulated the partitioning of KOP and MOPwt, whereas this effect was not observed for MOPN40D.   相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号