首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111280篇
  免费   1751篇
  国内免费   1855篇
  2024年   32篇
  2023年   204篇
  2022年   503篇
  2021年   902篇
  2020年   600篇
  2019年   739篇
  2018年   12450篇
  2017年   11044篇
  2016年   8195篇
  2015年   1721篇
  2014年   1575篇
  2013年   1743篇
  2012年   5903篇
  2011年   14214篇
  2010年   12847篇
  2009年   8977篇
  2008年   10763篇
  2007年   12211篇
  2006年   1066篇
  2005年   1223篇
  2004年   1535篇
  2003年   1555篇
  2002年   1243篇
  2001年   609篇
  2000年   452篇
  1999年   311篇
  1998年   187篇
  1997年   158篇
  1996年   114篇
  1995年   111篇
  1994年   84篇
  1993年   99篇
  1992年   116篇
  1991年   133篇
  1990年   94篇
  1989年   75篇
  1988年   73篇
  1987年   66篇
  1986年   39篇
  1985年   44篇
  1984年   30篇
  1983年   40篇
  1982年   23篇
  1979年   20篇
  1978年   16篇
  1977年   19篇
  1975年   19篇
  1972年   261篇
  1971年   280篇
  1962年   27篇
排序方式: 共有10000条查询结果,搜索用时 203 毫秒
951.
Gracilaria is a red seaweed that has been cultivated worldwide and is commercially used for food, fertilizers, animal fodder, and phycocolloids. However, the high morphological plasticity of seaweeds often leads to the misidentification in the traditional identification of Gracilaria species. Molecular markers are important especially in the correct identification of Gracilaria species with high economic value. Microsatellite markers were developed from the expressed sequence tags of seaweeds deposited at the National Center for Biotechnology Information database and used for differentiating Gracilaria changii collected at various localities and two other Gracilaria species. Out of 33 primer pairs, only one primer pair gave significant results that can distinguish between three different Gracilaria species as well as G. changii from various localities based on the variation in repeated nucleotides. The unweighted pair group method using arithmetic mean dendrogram analysis grouped Gracilaria species into five main clades: (a) G. changii from Batu Besar (Malacca), Sandakan (Sabah), Bintulu (Sarawak), Batu Tengah (Malacca), Gua Tanah (Malacca), Middle Banks (Penang), Sungai (Sg.) Merbok (Kedah), Teluk Pelandok (Negeri Sembilan), Pantai Dickson (Negeri Sembilan), Sg. Kong-Kong (Johore), and Sg. Pulai (Johore); (b) Gracilaria manilaensis from Cebu, Philippines; (c) G. changii from Morib (Selangor); (d) Gracilaria fisheri from Pattani, Thailand; and (e) G. changii from Pantai Dickson (Negeri Sembilan), Gua Tanah (Malacca), Sg. Merbok (Kedah), Sg. Kong-Kong (Johore), and Sg. Pulai (Johore). This result shows that this primer pair was able to distinguish between three different species, which are G. changii from Morib (Malaysia), G. fisheri from Pattani (Thailand), and G. manilaensis from Cebu (Philippines), and also between different genotypes of G. changii. This suggested that the simple sequence repeat primer we developed was suitable for differentiating between different Gracilaria species due to the polymorphisms caused by the variability in the number of tandem repeats.  相似文献   
952.
ABSTRACT

This study investigated the contents of saponins and phenolic compounds in relation to their antioxidant activity and α-glucosidase inhibition activity of 7 colored quinoa varieties. The total saponin content was significantly different among 7 varieties and ranged from 7.51 to 12.12 mg OAE/g DW. Darker quinoa had a higher content of phenolic compounds, as well as higher flavonoids and antioxidant activity than that of light varieties. Nine individual phenolic compounds were detected in free and bound form, with gallic acid and ferulic acid representing the major compounds. The free and bound phenolic compounds (gallic acid and ferulic acid in particular) exhibited high linear correlation with their corresponding antioxidant values. In addition, the free phenolic extracts from colored quinoa exhibited higher inhibitory activity against α-glucosidase than the bound phenolic extracts. These findings imply that colored quinoa with abundant bioactive phytochemicals could be an important natural source for preparing functional food.  相似文献   
953.
Human umbilical cord mesenchymal stem cells (hUCMSCs) are considered to be an ideal replacement for bone marrow MSCs. However, up to date, there is no convenient and efficient method for hUCMSC isolation and culture. The present study was carried out to explore the modified enzyme digestion for hUCMSC in vitro. Conventional enzyme digestion, modified enzyme digestion, and tissue explant were used on hUCMSCs to compare their efficiencies of isolation and culture, to observe primary cell growth and cell subculture. The results show that the cells cultured using the tissue explant method had a longer culture cycle (P < 0.01) and lower yield of primary cells per centimetre of umbilical cord (P < 0.01) compared with the two enzyme digestion methods. Subculture adherence and cell doubling took significantly less time with the tissue explant method (P < 0.05) than with the conventional enzyme digestion method; however, there was no significant difference between the tissue explant method and the modified enzyme digestion method (P > 0.05). Comparing two enzyme digestion methods, the modified method yielded more cells than did the conventional method (P < 0.01), and primary cell adherence took significantly less time with the modified method than with the conventional method (P < 0.05). Cell cycle analysis of the third-generation hUCMSCs cultured by modified enzyme digestion method indicated that most cells were quiescent. Immunofluorescence staining showed that these cells expressed MSC markers CD44 and CD90. And Von Kossa and oil red O staining detection showed that they could be differentiated into osteoblasts and adipocytes with induction medium in vitro. This study suggests that hUCMSC isolation and culture using 0.2 % collagenase II at 37 °C for digestion of 16–20 h is an effective and simple modified enzyme digestion method.  相似文献   
954.
Hydrogen sulfide (H2S) produced by cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE) in the transsulfuration pathway of homocysteine plays a number of pathophysiological roles. Hyperhomocysteinemia is involved in kidney fibrosis. However, the role of H2S in kidney fibrosis remains to be defined. Here, we investigated the role of H2S and its acting mechanism in unilateral ureteral obstruction (UO)-induced kidney fibrosis in mice. UO decreased expressions of CBS and CSE in the kidney with decrease of H2S concentration. Treatment with sodium hydrogen sulfide (NaHS, a H2S producer) during UO reduced UO-induced oxidative stress with preservations of catalase, copper-zinc superoxide dismutase (CuZnSOD), and manganese superoxide dismutase (MnSOD) expression, and glutathione level. In addition, NaHS mitigated decreases of CBS and CSE expressions, and H2S concentration in the kidney. NaHS treatment attenuated UO-induced increases in levels of TGF-β1, activated Smad3, and activated NF-κB. This study provided the first evidence of involvement of the transsulfuration pathway and H2S in UO-induced kidney fibrosis, suggesting that H2S and its transsulfuration pathway may be a potential target for development of therapeutics for fibrosis-related diseases.  相似文献   
955.
956.
The brown planthopper (BPH) Nilaparvata lugens is an economically impor- tant pest on rice plants. In this study, the higher population density and yellow-ripe stage of rice plants were used to construct adverse survival conditions (ASC) against BPH nymphs. Simultaneously, the low population density and tillering stage of rice plants were used to establish a suitable survival condition (SSC) as a control. Solexa/Illumina sequencing was used to identify genes of BPH nymphs responding to ASC. Significantly longer duration development of BPH nymphs and significantly lower brachypterous ratio of BPH adults were observed by ASC compared with SSC. A total of 2 544 differentially expressed genes (DEGs) were obtained and analyzed by BLASTx, Gene Ontology and KEGG Orthology. Gene ontology analysis revealed that the DEGs were mainly involved in categories of cell, cell part, cellular process, binding, catalytic, organelle and metabolic processes. 1138 DEGs having enzyme commission numbers were assigned to different metabolic pathways. The largest clusters were neurodegenerative diseases (137, 12.0%), followed by carbohy- drate metabolism (113, 9.9%), amino acid metabolism (94, 8.3%), nucleotide metabolism (76, 6.7%), energy metabolism (64, 5.6%), translation (60, 5.3%), lipid metabolism (58, 5.1%), and folding, sorting and degradation (52, 4.6%). Expressing profile of 11 DEGs during eight nymphal developmental stages of BPH were analyzed by quantitative real- time polymerase chain reaction. The 11 genes exhibited differential expression between ASC and SSC during at least one developmental stage. The DEGs identified in this study provide molecular proof of how BPH reconfigures its gene expression profile to adapt to overcrowding and low-quality hosts.  相似文献   
957.
目的用micro-CT方法,评估中等强度跑台运动对去卵巢大鼠腰椎微结构的影响。方法将30只3月龄雌性SD大鼠按体重分层后随机分为假手术、去卵巢静止和去卵巢运动三个组。运动组每周进行4次45min、速度18 m/min、坡度5°的跑台训练。正式运动处理14周时,取第2腰椎检测骨密度,取第4腰椎行micro-CT分析及三维结构重建;取第3腰椎椎体进行椎体压缩实验。结果去卵巢运动组第2腰椎骨密度、第3腰椎最大载荷、最大应力和弹性模量以及第4腰椎骨小梁体积和骨小梁数目显著高于去卵巢静止组,骨小梁分离度显著低于去卵巢静止组,而骨小梁厚度无显著变化。结论中等强度跑台运动能改善去卵巢大鼠腰椎的微结构。  相似文献   
958.
959.
Mobile genetic elements are responsible for half of the human genome, creating the host genomic instability or variability through several mechanisms. Two types of abnormal DNA methylation in the genome, hypomethylation and hypermethylation, are associated with cancer progression. Genomic hypermethylation has been most often observed on the CpG islands around gene promoter regions in cancer cells. In contrast, hypomethylation has been observed on mobile genetic elements in the cancer cells. It is recently considered that the hypomethylation of mobile genetic elements may play a biological role in cancer cells along with the DNA hypermethylation on CpG islands. Growing evidence has indicated that mobile genetic elements could be associated with the cancer initiation and progression through the hypomethylation. Here we review the recent progress on the relationship between DNA methylation and mobile genetic elements, focusing on the hypomethylation of LINE-1 and HERV elements in various human cancers and suggest that DNA hypomethylation of mobile genetic elements could have potential to be a new cancer therapy target in the future.  相似文献   
960.
L Cui  Y Shi  X Zhou  X Wang  J Wang  Y Lan  M Wang  L Zheng  H Li  Q Wu  J Zhang  D Fan  Y Han 《Cell death & disease》2013,4(11):e918
In a previous study, we elucidated the specific microRNA (miRNA) profile of hepatic differentiation. In this study, we aimed to clarify the instructive role of six overexpressed miRNAs (miR-1246, miR-1290, miR-148a, miR-30a, miR-424 and miR-542-5p) during hepatic differentiation of human umbilical cord lining-derived mesenchymal stem cells (hMSCs) and to test whether overexpression of any of these miRNAs is sufficient to induce differentiation of the hMSCs into hepatocyte-like cells. Before hepatic differentiation, hMSCs were infected with a lentivirus containing a miRNA inhibitor sequence. We found that downregulation of any one of the six hepatic differentiation-specific miRNAs can inhibit HGF-induced hepatic differentiation including albumin expression and LDL uptake. Although overexpression of any one of the six miRNAs alone or liver-enriched miR-122 cannot initiate hepatic differentiation, ectopic overexpression of seven miRNAs (miR-1246, miR-1290, miR-148a, miR-30a, miR-424, miR-542-5p and miR-122) together can stimulate hMSC conversion into functionally mature induced hepatocytes (iHep). Additionally, after transplantation of the iHep cells into mice with CCL4-induced liver injury, we found that iHep not only can improve liver function but it also can restore injured livers. The findings from this study indicate that miRNAs have the capability of directly converting hMSCs to a hepatocyte phenotype in vitro.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号