首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   145篇
  免费   7篇
  2022年   2篇
  2021年   4篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2016年   3篇
  2015年   10篇
  2014年   4篇
  2013年   10篇
  2012年   10篇
  2011年   9篇
  2010年   7篇
  2009年   2篇
  2008年   8篇
  2007年   2篇
  2006年   6篇
  2005年   5篇
  2004年   7篇
  2003年   5篇
  2002年   5篇
  2001年   4篇
  2000年   3篇
  1999年   7篇
  1998年   4篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1994年   4篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1972年   1篇
  1968年   1篇
排序方式: 共有152条查询结果,搜索用时 15 毫秒
11.
12.
The relationship between dental morphology, sex, body length and age of small cetaceans can be used to determine ontogeny, sexual dimorphism and geographical variation. The objective of this study was to determine the relationship between dental morphology, sex, body size and age. A total of 91 specimens of P. blainvillei and 80 specimens of S. fluviatilis accidentally captured in fisheries or stranded in northern Rio de Janeiro (21 masculine37'-22 masculine25'S), from September 1988 to November 1996 were analysed. The teeth root diameter in P. blainvillei was significantly different between the sex; the values for females were larger than males. In neither species aid we observed significant in variations dimension and number of teeth, thickness of dentine and cemental layers and in the maximum width of cement as a function of body size. Age was related to increases in tooth length, root and cingulum diameters, and maximum width of cement in individuals of P. blainvillei, and tooth and crown lengths and maximum width of cement in individuals of S. fluviatilis. The observation of a linear growth between maximum width of cement and age in both species indicates that the equations obtained can be used to estimate relative age in P. blainvillei and S. fluviatilis in northern of Rio de Janeiro.  相似文献   
13.
The ability of two strains of Lactobacillus acidophilus, CRL 640 and CRL 800, to survive and retain their biological activities under frozen storage was determined. Freezing and thawing, as well as frozen storage, damaged the cell membrane, rendering the microorganisms sensitive to sodium chloride and bile salts. Both lactic acid production and proteolytic activity were depressed after 21 days at -20 degreesC, whereas beta-galactosidase activity per cell unit was increased. Cell injury was partially overcome after repair in a salt-rich medium. Copyright 1998 Academic Press.  相似文献   
14.
15.
Studies of facilitative interactions as drivers of plant richness along environmental gradients often assume the existence of an overarching stress gradient that equally affects the performance of all the species in a given community. However, co-existing species differ in their ecophysiological adaptations, and do not experience the same stress level under particular environmental conditions. Moreover, these studies assume a unimodal relationship between richness and biomass, which is not as general as previously thought. We ignored these assumptions to assess changes in plant–plant interactions and their effect on local species richness across environmental gradients in semi-arid areas of Spain and Australia. We aimed to understand the relative importance of direct (microhabitat amelioration) and indirect (changes in the competitive relationships among the understorey species: niche segregation, competitive exclusion or intransitivity) mechanisms that might underlie the effects of nurse plants on local species richness. By jointly studying these direct and indirect mechanisms using a unifying framework, we found that nurse plants (trees, shrubs and tussock grasses) increased local richness not only by expanding the niche of neighbouring species but also by increasing niche segregation among them, though the latter was not important in all cases. The outcome of the competition-facilitation continuum varied depending on the study area, likely because the different types of stress gradient considered. When driven by both rainfall and temperature, or rainfall alone, the community-wide importance of nurse plants remained constant (Spanish sites), or showed a unimodal relationship along the gradient (Australian sites). This study expands our understanding of the relative roles of plant–plant interactions and environmental conditions as drivers of local species richness in semi-arid environments. The results can also be used to refine predictions about the response of plant communities to environmental change, and to clarify the relative importance of biotic interactions as drivers of such responses.  相似文献   
16.
17.
In this protocol, gene expression in yeast (Saccharomyces cerevisiae) is changed after exposure to oxidative stress induced by the addition of hydrogen peroxide (H2O2), an oxidizing agent. In the experiment, yeast is grown for 48 hours in 1/2X YPD broth containing 3X glucose. The culture is split into a control and treated group. The experiment culture is treated with 0.5 mM H2O2 in Hanks Buffered Saline (HBSS) for 1 hour. The control culture is treated with HBSS only. Total RNA is extracted from both cultures and is converted to a biotin-labeled cRNA product through a multistep process. The final synthesis product is taken back to the UVM Microarray Core Facility and hybridized to the Affymetrix yeast GeneChips. The resulting gene expression data are uploaded into bioinformatics data analysis software.Download video file.(79M, mov)  相似文献   
18.
We utilize in situ, temperature-dependent atomic force microscopy to examine the gel-fluid phase transition behavior in supported phospholipid bilayers constructed from 1,2-dimyristoyl-sn-glycero-3-phosphocholine, 1,2-dipentadecanoyl-sn-glycero-3-phosphocholine, and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine. The primary gel-fluid phase transition at T(m) occurs through development of anisotropic cracks in the gel phase, which develop into the fluid phase. At approximately 5 degrees C above T(m), atomic force microscopy studies reveal the presence of a secondary phase transition in all three bilayers studied. The secondary phase transition occurs as a consequence of decoupling between the two leaflets of the bilayer due to enhanced stabilization of the lower leaflet with either the support or the water entrained between the support and the bilayer. Addition of the transmembrane protein gramicidin A or construction of a highly defected gel phase results in elimination of this decoupling and removal of the secondary phase transition.  相似文献   
19.
Emphysema is currently a leading cause of mortality with no known effective therapy to attenuate progressive loss of lung function. Previous work supports that activation of nuclear factor erythroid 2-related factor 2 (Nrf2) is protective to the lung through induction of hundreds of antioxidant genes. In models of lung injury, the expression of NAD(P)H:quinone oxidoreductase 1 (NQO1) is upregulated in a manner dependent on Nrf2 and human emphysema is associated with reduced levels of NQO1. However, the functional role of NQO1 in emphysema remains unknown. In this study, we demonstrate the protective role of NQO1 in the development of emphysema using mouse models. NQO1-deficient animals demonstrated premature age-related emphysema and were more susceptible to both elastase and inhaled lipopolysaccharide models of emphysema. The absence of NQO1 was associated with enhanced markers of oxidant stress. Treatment of NQO1-deficient animals with the antioxidant N-acetylcysteine reversed the NQO1-dependent emphysematous changes. In vitro studies utilizing either inhibition or induction of NQO1 demonstrated a potent antioxidant role of NQO1 in macrophages, suggesting a role for macrophage-derived oxidants in the pathogenesis of emphysema. These novel findings support a functional role for NQO1 in protecting the lung from development of emphysema.  相似文献   
20.
CD4 T cells, and especially T follicular helper cells, are critical for the generation of a robust humoral response to an infection or vaccination. Importantly, immunosenescence affects CD4 T‐cell function, and the accumulation of intrinsic defects decreases the cognate helper functions of these cells. However, much less is known about the contribution of the aged microenvironment to this impaired CD4 T‐cell response. In this study, we have employed a preclinical model to determine whether the aged environment contributes to the defects in CD4 T‐cell functions with aging. Using an adoptive transfer model in mice, we demonstrate for the first time that the aged microenvironment negatively impacts at least three steps of the CD4 T‐cell response to antigenic stimulation. First, the recruitment of CD4 T cells to the spleen is reduced in aged compared to young hosts, which correlates with dysregulated chemokine expression in the aged organ. Second, the priming of CD4 T cells by DCs is reduced in aged compared to young mice. Finally, naïve CD4 T cells show a reduced transition to a T follicular helper cell phenotype in the aged environment, which impairs the subsequent generation of germinal centers. These studies have provided new insights into how aging impacts the immune system and how these changes influence the development of immunity to infections or vaccinations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号