首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1323篇
  免费   97篇
  国内免费   1篇
  2023年   7篇
  2022年   19篇
  2021年   62篇
  2020年   25篇
  2019年   38篇
  2018年   32篇
  2017年   28篇
  2016年   37篇
  2015年   75篇
  2014年   86篇
  2013年   90篇
  2012年   127篇
  2011年   97篇
  2010年   69篇
  2009年   63篇
  2008年   68篇
  2007年   69篇
  2006年   54篇
  2005年   59篇
  2004年   63篇
  2003年   39篇
  2002年   51篇
  2001年   10篇
  2000年   10篇
  1999年   8篇
  1998年   9篇
  1997年   6篇
  1996年   4篇
  1994年   4篇
  1992年   5篇
  1991年   7篇
  1990年   6篇
  1989年   6篇
  1987年   4篇
  1982年   5篇
  1980年   4篇
  1979年   5篇
  1978年   6篇
  1976年   2篇
  1975年   4篇
  1973年   3篇
  1972年   4篇
  1970年   2篇
  1969年   4篇
  1968年   2篇
  1957年   4篇
  1955年   3篇
  1941年   4篇
  1936年   2篇
  1934年   3篇
排序方式: 共有1421条查询结果,搜索用时 859 毫秒
21.
22.
23.
Therapies that utilize immune checkpoint inhibition work by leveraging mutation-derived neoantigens and have shown greater clinical efficacy in tumors with higher mutational burden. Whether tumors with a low mutational burden are susceptible to neoantigen-targeted therapy has not been fully addressed. To examine the feasibility of neoantigen-specific adoptive T-cell therapy, the authors studied the T-cell response against somatic variants in five patients with myelodysplastic syndrome (MDS), a malignancy with a very low tumor mutational burden. DNA and RNA from tumor (CD34+) and normal (CD3+) cells isolated from the patients’ blood were sequenced to predict patient-specific MDS neopeptides. Neopeptides representing the somatic variants were used to induce and expand autologous T cells ex vivo, and these were systematically tested in killing assays to determine the proportion of neopeptides yielding neoantigen-specific T cells. The authors identified a total of 32 somatic variants (four to eight per patient) and found that 21 (66%) induced a peptide-specific T-cell response and 19 (59%) induced a T-cell response capable of killing autologous tumor cells. Of the 32 somatic variants, 11 (34%) induced a CD4+ response and 11 (34%) induced a CD8+ response that killed the tumor. These results indicate that in vitro induction of neoantigen-specific T cells is feasible for tumors with very low mutational burden and that this approach warrants investigation as a therapeutic option for such patients.  相似文献   
24.
National surveys of the exposure of non-smokers to secondhand smoke based on serum cotinine analyses have consistently identified certain groups within the population including children, males and non-Hispanic Blacks as having relatively greater exposure. Although these differences in mean serum cotinine concentrations probably represent differences in exposure of individuals in their daily lives, it is also possible that metabolic or other differences in response might influence the results. To better define the nature of those findings, we have examined the response of 40 non-smokers including both men and women and African-Americans and whites to sidestream (SS) cigarette smoke generated by a smoking machine under controlled conditions. In this study, participants were exposed to aged, diluted SS smoke (ADSS) generated in an environmental chamber with a mean air nicotine concentration of 140 μg m?3 and 8.6?ppm CO for 4?h. Salivary cotinine was measured every 30?min, and serum cotinine samples were taken prior to, and 2?h after exposure. Urinary nicotine metabolites and NNAL, a tobacco-specific nitrosamine, and 4-aminobiphenyl (4-AB) haemoglobin adducts were also measured prior to and 2?h following the exposure. Under these uniform, controlled conditions, we found a similar response to ADSS smoke exposure among all the participants. In all cases a significant increase in biomarker concentration was noted following exposure, and the short-term increases in salivary cotinine concentration were quite similar at approximately 12?pg ml?1 min?1 among the groups. In this small study, no significant differences by gender or race were seen in the mean increases observed in cotinine, NNAL or 4-AB adducts following 4?h of exposure. Thus, our results are most consistent with a relatively uniform response in tobacco biomarker concentrations following short-term exposure to ADSS tobacco smoke, and suggest that biomarker measurements are capable of effectively indicating increases in exposure among groups of non-smokers.  相似文献   
25.
26.
Niemann-Pick Type C (NPC) disease is an autosomal recessive neurodegenerative disorder caused in most cases by mutations in the NPC1 gene. NPC1-deficiency is characterized by late endosomal accumulation of cholesterol, impaired cholesterol homeostasis, and a broad range of other cellular abnormalities. Although neuronal abnormalities and glial activation are observed in nearly all areas of the brain, the most severe consequence of NPC1-deficiency is a near complete loss of Purkinje neurons in the cerebellum. The link between cholesterol trafficking and NPC pathogenesis is not yet clear; however, increased oxidative stress in symptomatic NPC disease, increases in mitochondrial cholesterol, and alterations in autophagy/mitophagy suggest that mitochondria play a role in NPC disease pathology. Alterations in mitochondrial function affect energy and neurotransmitter metabolism, and are particularly harmful to the central nervous system. To investigate early metabolic alterations that could affect NPC disease progression, we performed metabolomics analyses of different brain regions from age-matched wildtype and Npc1 -/- mice at pre-symptomatic, early symptomatic and late stage disease by 1H-NMR spectroscopy. Metabolic profiling revealed markedly increased lactate and decreased acetate/acetyl-CoA levels in Npc1 -/- cerebellum and cerebral cortex at all ages. Protein and gene expression analyses indicated a pre-symptomatic deficiency in the oxidative decarboxylation of pyruvate to acetyl-CoA, and an upregulation of glycolytic gene expression at the early symptomatic stage. We also observed a pre-symptomatic increase in several indicators of oxidative stress and antioxidant response systems in Npc1 -/- cerebellum. Our findings suggest that energy metabolism and oxidative stress may present additional therapeutic targets in NPC disease, especially if intervention can be started at an early stage of the disease.  相似文献   
27.
A large body of research has aimed to determine the neurochemical factors driving differential sensitivity to ethanol between individuals in an attempt to find predictors of ethanol abuse vulnerability. Here we find that the locomotor activating effects of ethanol are markedly greater in DBA/2J compared to C57BL/6J mice, although it is unclear as to what neurochemical differences between strains mediate this behavior. Dopamine elevations in the nucleus accumbens and caudate-putamen regulate locomotor behavior for most drugs, including ethanol; thus, we aimed to determine if differences in these regions predict strain differences in ethanol-induced locomotor activity. Previous studies suggest that ethanol interacts with the dopamine transporter, potentially mediating its locomotor activating effects; however, we found that ethanol had no effects on dopamine uptake in either strain. Ex vivo voltammetry allows for the determination of ethanol effects on presynaptic dopamine terminals, independent of drug-induced changes in firing rates of afferent inputs from either dopamine neurons or other neurotransmitter systems. However, differences in striatal dopamine dynamics did not predict the locomotor-activating effects of ethanol, since the inhibitory effects of ethanol on dopamine release were similar between strains. There were differences in presynaptic dopamine function between strains, with faster dopamine clearance in the caudate-putamen of DBA/2J mice; however, it is unclear how this difference relates to locomotor behavior. Because of the role of the dopamine system in reinforcement and reward learning, differences in dopamine signaling between the strains could have implications for addiction-related behaviors that extend beyond ethanol effects in the striatum.  相似文献   
28.
Kaposi''s sarcoma-associated herpesvirus (KSHV) is causally linked to several human cancers, including Kaposi''s sarcoma, primary effusion lymphoma and multicentric Castleman''s disease, malignancies commonly found in HIV-infected patients. While KSHV encodes diverse functional products, its mechanism of oncogenesis remains unknown. In this study, we determined the roles KSHV microRNAs (miRs) in cellular transformation and tumorigenesis using a recently developed KSHV-induced cellular transformation system of primary rat mesenchymal precursor cells. A mutant with a cluster of 10 precursor miRs (pre-miRs) deleted failed to transform primary cells, and instead, caused cell cycle arrest and apoptosis. Remarkably, the oncogenicity of the mutant virus was fully restored by genetic complementation with the miR cluster or several individual pre-miRs, which rescued cell cycle progression and inhibited apoptosis in part by redundantly targeting IκBα and the NF-κB pathway. Genomic analysis identified common targets of KSHV miRs in diverse pathways with several cancer-related pathways preferentially targeted. These works define for the first time an essential viral determinant for KSHV-induced oncogenesis and identify NF-κB as a critical pathway targeted by the viral miRs. Our results illustrate a common theme of shared functions with hierarchical order among the KSHV miRs.  相似文献   
29.
Malignant pleural mesothelioma (MPM) is a highly aggressive tumor with poor prognosis. Current treatment is rarely curative, thus novel meaningful therapies are urgently needed. Inhibition of Hedgehog (Hh) signaling at the cell membrane level in several cancers has shown anti-cancer activity in recent clinical studies. Evidence of Hh-independent Gli activation suggests Gli as a more potent therapeutic target. The current study is aimed to evaluate the potential of Gli as a therapeutic target to treat MPM. The expression profiles of Gli factors and other Hh signaling components were characterized in 46 MPM patient tissue samples by RT-PCR and immunohistochemistry. Cultured cell lines were employed to investigate the requirement of Gli activation in tumor cell growth by inhibiting Gli through siRNA or a novel small molecule Gli inhibitor (Gli-I). A xenograft model was used to evaluate Gli-I in vivo. In addition, a side by side comparison between Gli and Smoothened (Smo) inhibition was conducted in vitro using siRNA and small molecule inhibitors. Our study reported aberrant Gli1 and Gli2 activation in a large majority of tissues. Inhibition of Gli by siRNAs or Gli-I suppressed cell growth dramatically both in vitro and in vivo. Inhibition of Gli exhibited better cytotoxicity than that of Smo by siRNA and small molecule inhibitors vismodegib and cyclopamine. Combination of Gli-I and pemetrexed, as well as Gli-I and vismodegib demonstrated synergistic effects in suppression of MPM proliferation in vitro. In summary, Gli activation plays a critical role in MPM. Inhibition of Gli function holds strong potential to become a novel, clinically effective approach to treat MPM.  相似文献   
30.

Background

Intrahepatocellular (IHCL) and intramyocellular (IMCL) lipids are ectopic lipid stores. Aerobic exercise results in IMCL utilization in subjects over a broad range of exercise capacity. IMCL and IHCL have been related to impaired insulin action at the skeletal muscle and hepatic level, respectively. The acute effect of aerobic exercise on IHCL is unknown. Possible regulatory factors include exercise capacity, insulin sensitivity and fat availability subcutaneous and visceral fat mass).

Aim

To concomitantly investigate the effect of aerobic exercise on IHCL and IMCL in healthy subjects, using Magnetic Resonance spectroscopy.

Methods

Normal weight, healthy subjects were included. Visit 1 consisted of a determination of VO2max on a treadmill. Visit 2 comprised the assessment of hepatic and peripheral insulin sensitivity by a two-step hyperinsulinaemic euglycaemic clamp. At Visit 3, subcutaneous and visceral fat mass were assessed by whole body MRI, IHCL and IMCL before and after a 2-hours aerobic exercise (50% of VO2max) using 1H-MR-spectroscopy.

Results

Eighteen volunteers (12M, 6F) were enrolled in the study (age, 37.6±3.2 years, mean±SEM; VO2max, 53.4±2.9 mL/kg/min). Two hours aerobic exercise resulted in a significant decrease in IMCL (−22.6±3.3, % from baseline) and increase in IHCL (+34.9±7.6, % from baseline). There was no significant correlation between the exercise-induced changes in IMCL and IHCL and exercise capacity, subcutaneous and visceral fat mass and hepatic or peripheral insulin sensitivity.

Conclusions

IMCL and IHCL are flexible ectopic lipid stores that are acutely influenced by physical exercise, albeit in different directions.

Trial Registration

ClinicalTrial.gov NCT00491582  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号