排序方式: 共有15条查询结果,搜索用时 0 毫秒
11.
Hu Cui Tietao Zhang Hao Nie Zhongcheng Wang Xuelei Zhang Bo Shi Xiumei Xing Fuhe Yang Xiuhua Gao 《Biological trace element research》2018,182(2):257-264
The objective of this study was to investigate the effects of different sources and levels of zinc (Zn) on growth performance, nutrient digestibility, serum biochemical parameters, and fur quality in growing-furring male mink. Animals in the control group were fed a basal diet with no Zn supplementation. Mink in the other nine treatments were fed the basal diet supplemented with Zn from either grade Zn sulfate (ZnSO4·7H2O), Zn glycinate (ZnGly), or Zn pectin oligosaccharides (ZnPOS) at concentrations of either 100, 300, or 900 mg Zn/kg dry matter. One hundred and fifty healthy 15-week-old male mink were randomly allocated to ten dietary treatments (n = 15/group) for a 60-day trial from mid-September to pelting in December. Mink in the Zn-POS groups had higher average daily gain than those in the control group (P < 0.05). Zn source slightly improved the feed/gain (P = 0.097). N retention was increased by Zn addition (P < 0.05). Mink supplemented with dietary Zn had higher (P < 0.05) pancreas Zn level than the control group. Fur length was greater (P < 0.05) in ZnGly and ZnPOS groups compared with the control. In addition, fur length and fur density increased (linear, P < 0.05) with Zn supplementation in the diet. In conclusion, our data show that dietary Zn addition improves growth performance by increasing nitrogen retention and fat digestibility in growing-furring mink and Z-POS is equally bioavailable to mink compared to ZnGly. 相似文献
12.
Tietao Wang Zhaoyu Hu Xiao Du Yue Shi Jing Dang Mijoon Lee Dusan Hesek Shahriar Mobashery Min Wu Haihua Liang 《Molecular microbiology》2020,114(2):308-321
The human pathogen Pseudomonas aeruginosa harbors three paralogous zinc proteases annotated as AmpD, AmpDh2, and AmpDh3, which turn over the cell wall and cell wall-derived muropeptides. AmpD is cytoplasmic and plays a role in the recycling of cell wall muropeptides, with a link to antibiotic resistance. AmpDh2 is a periplasmic soluble enzyme with the former anchored to the inner leaflet of the outer membrane. We document, herein, that the type VI secretion system locus II (H2-T6SS) of P. aeruginosa delivers AmpDh3 (but not AmpD or AmpDh2) to the periplasm of a prey bacterium upon contact. AmpDh3 hydrolyzes the cell wall peptidoglycan of the prey bacterium, which leads to its killing, thereby providing a growth advantage for P. aeruginosa in bacterial competition. We also document that the periplasmic protein PA0808, heretofore of unknown function, affords self-protection from lysis by AmpDh3. Cognates of the AmpDh3-PA0808 pair are widely distributed across Gram-negative bacteria. Taken together, these findings underscore the importance of their function as an evolutionary advantage and that of the H2-T6SS as the means for the manifestation of the effect. 相似文献
13.
14.
Huang R Shi F Lei T Song Y Hughes CL Liu G 《Experimental biology and medicine (Maywood, N.J.)》2007,232(1):118-125
Worldwide, ocular cataracts are a major cause of human blindness. A key goal of cataract-related research is to identify simple, cost-efficient but effective ways to prevent cataract formation or progression. Genistein is a naturally occurring dietary isoflavone with well-documented estrogenic, antioxidant, and protein tyrosine kinase inhibitor activity, which in turn modulates the activity of several enzymes involved in cell signaling and proliferation. Furthermore, many isoflavones have been shown to be potent inhibitors of aldose reductase, which is an important rate-limiting enzyme in the process of cataract induction in the metabolic disease galactosemia. In order to assess the potential for genistein to mitigate cataract formation, we have studied its effects in the animal model of dietary galactose-induced cataracts in adult male rats. Our experimental hypothesis was that dietary genistein would prevent or delay the progression of cataracts induced by high dietary intake of galactose. Our results show that the isoflavone genistein was not able to completely prevent galactose-induced cataract formation, but genistein did delay the progression of cataracts induced by dietary galactose. In addition, we found that dietary galactose decreased concentrations of serum somatostatin, while adding genistein decreased the serum glucose level but increased the serum testosterone level. As an initial inquiry into the mechanisms by which the partial protective effect of genistein could be mediated, we found that genistein increased the expression of connexin (Cx) 43 in the lens but did not affect the expression of soluble guanylyl cyclase (sGC) subunits. This finding suggests that the partial protective effect of genistein on cataract induction appears to be unrelated to sGC but may be mediated by enhanced expression of Cx43 and changed metabolic state. 相似文献
15.